首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
The unique ability of the pikromycin (Pik) polyketide synthase to generate 12- and 14-membered ring macrolactones presents an opportunity to explore the fundamental processes underlying polyketide synthesis, specifically the mechanistic details of the chain extension process. We have overexpressed and purified PikAIII (module 5) and PikAIV (module 6) and assessed the ability of these proteins to generate tri- and tetraketide lactone products using N-acetylcysteamine-activated diketides and (14)C-methylmalonyl-CoA as substrates. Comparison of the stereochemical specificities for PikAIII and PikAIV and the reported values for the DEBS modules reveals significant differences between these systems.  相似文献   

2.
A truncated version of the spinosyn polyketide synthase comprising the loading module and the first four extension modules fused to the erythromycin thioesterase domain was expressed in Saccharopolyspora erythraea. A novel pentaketide lactone product was isolated, identifying cryptic steps of spinosyn biosynthesis and indicating the potential of this approach for the biosynthetic engineering of spinosyn analogues. A pathway for the formation of the tetracyclic spinosyn aglycone is proposed.  相似文献   

3.
Regiospecific cyclizations of the nascent poly-beta-ketone backbones dictate the structures of polyketide natural products. The fungal iterative megasynthases use terminal thioesterase/claisen cyclase (TE/CLC) domains to direct the fate of the polyketide chains. In this work, we present two strategies toward redirecting the cyclization steps of fungal PKSs using the Gibberella fujikuroi PKS4. First, inactivation or removal of the TE/CLC domain resulted in the synthesis of the new polyketide SMA93 2. Complementation of the mutant PKS4 with a standalone TE/CLC domain restored the regioselective cyclization steps of PKS4 and led to the synthesis of SMA76 1, demonstrating that cyclization enzymes can interact with the megasynthase in trans. This led to the second approach in which various dissociated, bacterial tailoring enzymes were added to the megasynthase in trans. Addition of the act KR led to the synthesis of mutactin 3, while the addition of first ring and second ring cyclases yielded anthraquinone compounds DMAC 5 and SEK26 6. The cooperative activities of fungal and bacterial PKS components are especially important and enable synthesis of polyketides utilizing enzymes from two distinct families of PKSs.  相似文献   

4.
BACKGROUND: Polyketides are important compounds with antibiotic and anticancer activities. Several modular polyketide synthases (PKSs) contain a terminal thioesterase (TE) domain probably responsible for the release and concomitant cyclization of the fully processed polyketide chain. Because the TE domain influences qualitative aspects of product formation by engineered PKSs, its mechanism and specificity are of considerable interest. RESULTS: The TE domain of the 6-deoxyerythronolide B synthase was overexpressed in Escherichia coli. When tested against a set of N-acetyl cysteamine thioesters the TE domain did not act as a cyclase, but showed significant hydrolytic specificity towards substrates that mimic important features of its natural substrate. Also the overall rate of polyketide chain release was strongly enhanced by a covalent connection between the TE domain and the terminal PKS module (by as much as 100-fold compared with separate TE and PKS 'domains'). CONCLUSIONS: The inability of the TE domain alone to catalyze cyclization suggests that macrocycle formation results from the combined action of the TE domain and a PKS module. The chain-length and stereochemical preferences of the TE domain might be relevant in the design and engineered biosynthesis of certain novel polyketides. Our results also suggest that the TE domain might loop back to catalyze the release of polyketide chains from both terminal and pre-terminal modules, which may explain the ability of certain naturally occurring PKSs, such as the picromycin synthase, to generate both 12-membered and 14-membered macrolide antibiotics.  相似文献   

5.
BACKGROUND: Polyketides are structurally diverse natural products with a wide range of useful activities. Bacterial modular polyketide synthases (PKSs) catalyse the production of non-aromatic polyketides using a different set of enzymes for each successive cycle of chain extension. The choice of starter unit is governed by the substrate specificity of a distinct loading module. The unusual loading module of the soraphen modular PKS, from the myxobacterium Sorangium cellulosum, specifies a benzoic acid starter unit. Attempts to design functional hybrid PKSs using this loading module provide a stringent test of our understanding of PKS structure and function, since the order of the domains in the loading and first extension module is non-canonical in the soraphen PKS, and the producing strain is not an actinomycete. RESULTS: We have constructed bimodular PKSs based on DEBS1-TE, a derivative of the erythromycin PKS that contains only extension modules 1 and 2 and a thioesterase (TE) domain, by substituting one or more domains from the soraphen PKS. A hybrid PKS containing the soraphen acyltransferase domain AT1b instead of extension acyltransferase domain AT1 produced triketide lactones lacking a methyl group at C-4, as expected if AT1b catalyses the addition of malonyl-CoA during the first extension cycle on the soraphen PKS. Substitution of the DEBS1-TE loading module AT domain by the soraphen AT1a domain led to the production of 5-phenyl-substituted triketide lactone, as well as the normal products of DEBS1-TE. This 5-phenyl triketide lactone was also the product of a hybrid PKS containing the entire soraphen PKS loading module as well as part of its first extension module. Phenyl-substituted lactone was only produced when measures were simultaneously taken to increase the intracellular supply of benzoyl-CoA in the host strain of Saccharopolyspora erythraea. CONCLUSIONS: These results demonstrate that the ability to recruit a benzoate starter unit can be conferred on a modular PKS by the transfer either of a single AT domain, or of multiple domains to produce a chimaeric first extension module, from the soraphen PKS. However, benzoyl-CoA needs to be provided within the cell as a specific precursor. The data also support the respective roles previously assigned to the adjacent AT domains of the soraphen loading/first extension module. Construction of such hybrid actinomycete-myxobacterial enzymes should significantly extend the synthetic repertoire of modular PKSs.  相似文献   

6.
The production of epothilone mixtures is a direct consequence of the substrate tolerance of the module 3 acyltransferase (AT) domain of the epothilone polyketide synthase (PKS) which utilises both malonyl- and methylmalonyl-CoA extender units. Particular amino acid motifs in the active site of AT domains influence substrate selection for methylmalonyl-CoA (YASH) or malonyl-CoA (HAFH). This motif appears in hybrid form (HASH) in epoAT3 and may represent the molecular basis for the relaxed specificity of the domain. To investigate this possibility the AT domains from modules 2 and 3 of the epothilone PKS were examined in the heterologous DEBS1-TE model PKS. Substitution of AT1 of DEBS1-TE by epoAT2 and epoAT3 both resulted in functional PKSs, although lower yields of total products were observed when compared to DEBS1-TE (2% and 11.5% respectively). As expected, epoAT3 was significantly more promiscuous in keeping with its nature during epothilone biosynthesis. When the mixed motif (HASH) of epoAT3 within the hybrid PKS was mutated to HAFH (indicative of malonyl-CoA selection) it resulted in a non-productive PKS. When this mixed motif was converted to YASH (indicative of methylmalonyl-CoA selection) the selectivity of the hybrid PKS for methylmalonyl-CoA showed no statistically significant increase, and was associated with a loss of productivity.  相似文献   

7.
The chalcone synthase (CHS) superfamily of type III polyketide synthases (PKSs) produces a variety of plant secondary metabolites with remarkable structural diversity and biological activities (e.g., chalcones, stilbenes, benzophenones, acrydones, phloroglucinols, resorcinols, pyrones, and chromones). Here we describe an octaketide-producing novel plant-specific type III PKS from aloe (Aloe arborescens) sharing 50-60% amino acid sequence identity with other plant CHS-superfamily enzymes. A recombinant enzyme expressed in Escherichia coli catalyzed seven successive decarboxylative condensations of malonyl-CoA to yield aromatic octaketides SEK4 and SEK4b, the longest polyketides known to be synthesized by the structurally simple type III PKS. Surprisingly, site-directed mutagenesis revealed that a single residue Gly207 (corresponding to the CHS's active site Thr197) determines the polyketide chain length and product specificity. Small-to-large substitutions (G207A, G207T, G207M, G207L, G207F, and G207W) resulted in loss of the octaketide-forming activity and concomitant formation of shorter chain length polyketides (from triketide to heptaketide) including a pentaketide chromone, 2,7-dihydroxy-5-methylchromone, and a hexaketide pyrone, 6-(2,4-dihydroxy-6-methylphenyl)-4-hydroxy-2-pyrone, depending on the size of the side chain. Notably, the functional diversity of the type III PKS was shown to evolve from simple steric modulation of the chemically inert single residue lining the active-site cavity accompanied by conservation of the Cys-His-Asn catalytic triad. This provided novel strategies for the engineered biosynthesis of pharmaceutically important plant polyketides.  相似文献   

8.
BACKGROUND: Modular polyketide synthases (PKSs) produce a wide range of medically significant compounds. In the case of the pikromycin PKS of Streptomyces venezuelae, four separate polypeptides (PikAI-PikAIV), comprising a total of one loading domain and six extension modules, generate the 14-membered ring macrolactone narbonolide. The polypeptide PikAIV contains a thioesterase (TE) domain and is responsible for catalyzing both the last elongation step with methylmalonyl CoA, and subsequent release of the final polyketide chain elongation intermediate from the PKS. Under certain growth conditions this polypeptide is synthesized from an alternative translational start site, giving rise to an N-terminal truncated form of PikAIV, containing only half of the ketosynthase (KS(6)) domain. The truncated form of PikAIV is unable to catalyze the final elongation step, but is able to cleave a polyketide chain from the preceding module on PikAIII (ACP(5)), giving rise to the 12-membered ring product 10-deoxymethynolide. RESULTS: S. venezuelae mutants expressing hybrid PikAIV polypeptides containing acyl carrier protein (ACP) and malonyl CoA specific acyltransferase (AT) domains from the rapamycin PKS were unable to catalyze production of 12- or 14-membered ring macrolactone products. Plasmid-based expression of a hybrid PikAIV containing the native KS(6) and TE domains, however, restored production of both narbonolide and 10-deoxymethynolide in the S. venezuelae AX912 mutant that generates a TE-deleted form of PikAIV. Use of alternative KS domains or deletion of the KS(6) domain within the hybrid PikAIV resulted in loss of both products. Plasmid-based expression of a TE domain of PikAIV as a separate polypeptide in the AX912 mutant resulted in greater than 50% restoration of 10-deoxymethynolide, but not in mutants expressing a hybrid PikAIV bearing an unnatural AT domain. Mutants expressing hybrid PikAIV polypeptides containing the natural AT(6) domains and different ACP domains efficiently produced polyketide products, but with a significantly higher 10-deoxymethynolide/narbonolide ratio than observed with native PikAIV. CONCLUSIONS: Dimerization of KS(6) modules allows in vivo formation of a PKS heterodimer using PikAIV polypeptides containing different AT and ACP domains. In such heterodimers, the TE domain and the AT(6) domain responsible for formation of the narbonolide product are located on different polypeptide chains. The AT(6) domain of PikAIV plays an important role in facilitating TE-catalyzed chain termination (10-deoxymethynolide formation) at the proceeding module in PikAIII. The pikromycin PKS can tolerate the presence of multiple forms (active and inactive) of PikAIV, and decreased efficiency of elongation by PikAIV can result in increased levels of 10-deoxymethynolide. These results provide new insight into functional molecular interactions and interdomain recognition in modular PKSs.  相似文献   

9.
Background: Polyketides are structurally diverse natural products with a wide range of useful activities. Bacterial modular polyketide synthases (PKSs) catalyse the production of non-aromatic polyketides using a different set of enzymes for each successive cycle of chain extension. The choice of starter unit is governed by the substrate specificity of a distinct loading module. The unusual loading module of the soraphen modular PKS, from the myxobacterium Sorangium cellulosum, specifies a benzoic acid starter unit. Attempts to design functional hybrid PKSs using this loading module provide a stringent test of our understanding of PKS structure and function, since the order of the domains in the loading and first extension module is non-canonical in the soraphen PKS, and the producing strain is not an actinomycete.Results: We have constructed bimodular PKSs based on DEBS1-TE, a derivative of the erythromycin PKS that contains only extension modules 1 and 2 and a thioesterase (TE) domain, by substituting one or more domains from the soraphen PKS. A hybrid PKS containing the soraphen acyltransferase domain AT1b instead of extension acyltransferase domain AT1 produced triketide lactones lacking a methyl group at C-4, as expected if AT1b catalyses the addition of malonyl-CoA during the first extension cycle on the soraphen PKS. Substitution of the DEBS1-TE loading module AT domain by the soraphen AT1a domain led to the production of 5-phenyl-substituted triketide lactone, as well as the normal products of DEBS1-TE. This 5-phenyl triketide lactone was also the product of a hybrid PKS containing the entire soraphen PKS loading module as well as part of its first extension module. Phenyl-substituted lactone was only produced when measures were simultaneously taken to increase the intracellular supply of benzoyl-CoA in the host strain of Saccharopolyspora erythraea.Conclusions: These results demonstrate that the ability to recruit a benzoate starter unit can be conferred on a modular PKS by the transfer either of a single AT domain, or of multiple domains to produce a chimaeric first extension module, from the soraphen PKS. However, benzoyl-CoA needs to be provided within the cell as a specific precursor. The data also support the respective roles previously assigned to the adjacent AT domains of the soraphen loading/first extension module. Construction of such hybrid actinomycete–myxobacterial enzymes should significantly extend the synthetic repertoire of modular PKSs.  相似文献   

10.
The dehydratase (DH) domain of module 4 of the 6-deoxyerythronolide B synthase (DEBS) has been shown to catalyze an exclusive syn elimination/syn addition of water. Incubation of recombinant DH4 with chemoenzymatically prepared anti-(2R,3R)-2-methyl-3-hydroxypentanoyl-ACP (2a-ACP) gave the dehydration product 3-ACP. Similarly, incubation of DH4 with synthetic 3-ACP resulted in the reverse enzyme-catalyzed hydration reaction, giving an ~3:1 equilbrium mixture of 2a-ACP and 3-ACP. Incubation of a mixture of propionyl-SNAC (4), methylmalonyl-CoA, and NADPH with the DEBS β-ketoacyl synthase-acyl transferase [KS6][AT6] didomain, DEBS ACP6, and the ketoreductase domain from tylactone synthase module 1 (TYLS KR1) generated in situ anti-2a-ACP that underwent DH4-catalyzed syn dehydration to give 3-ACP. DH4 did not dehydrate syn-(2S,3R)-2b-ACP, syn-(2R,3S)-2c-ACP, or anti-(2S,3S)-2d-ACP generated in situ by DEBS KR1, DEBS KR6, or the rifamycin synthase KR7 (RIFS KR7), respectively. Similarly, incubation of a mixture of (2S,3R)-2-methyl-3-hydroxypentanoyl-N-acetylcysteamine thioester (2b-SNAC), methylmalonyl-CoA, and NADPH with DEBS [KS6][AT6], DEBS ACP6, and TYLS KR1 gave anti-(2R,3R)-6-ACP that underwent syn dehydration catalyzed by DEBS DH4 to give (4R,5R)-(E)-2,4-dimethyl-5-hydroxy-hept-2-enoyl-ACP (7-ACP). The structure and stereochemistry of 7 were established by GC-MS and LC-MS comparison of the derived methyl ester 7-Me to a synthetic sample of 7-Me.  相似文献   

11.
The catalytic potential of octaketide synthase (OKS), a plant-specific type III polyketide synthase (PKS) from Aloe arborescens, was investigated by phenylacetyl-CoA and benzoyl-CoA as starter substrates. As a result, a novel C16 pentaketide coumarin was produced from phenylacetyl-CoA, whereas benzoyl-CoA was not a good substrate of OKS. Remarkably, a structure-guided OKS N222G mutant dramatically extended the product chain length to yield four novel polyketides including C22 aromatic octaketides from the C6-C2 phenylacetyl starter, as well as a novel C19 heptaketide benzophenone from the C6-C1 benzoyl starter.  相似文献   

12.
The allyl moiety of the immunosuppressive agent FK506 is structurally unique among polyketides and critical for its potent biological activity. Here, we detail the biosynthetic pathway to allylmalonyl-coenzyme A (CoA), from which the FK506 allyl group is derived, based on a comprehensive chemical, biochemical, and genetic interrogation of three FK506 gene clusters. A discrete polyketide synthase (PKS) with noncanonical domain architecture presumably in coordination with the fatty acid synthase pathway of the host catalyzes a multistep enzymatic reaction to allylmalonyl-CoA via trans-2-pentenyl-acyl carrier protein. Characterization of this discrete pathway facilitated the engineered biosynthesis of novel allyl group-modified FK506 analogues, 36-fluoro-FK520 and 36-methyl-FK506, the latter of which exhibits improved neurite outgrowth activity. This unique feature of FK506 biosynthesis, in which a dedicated PKS provides an atypical extender unit for the main modular PKS, illuminates a new strategy for the combinatorial biosynthesis of designer macrolide scaffolds as well as FK506 analogues.  相似文献   

13.
14.
The ketoreductase (KR) domains eryKR(1) and eryKR(2) from the erythromycin-producing polyketide synthase (PKS) reduce 3-ketoacyl-thioester intermediates with opposite stereospecificity. Modeling of eryKR(1) and eryKR(2) showed that conserved amino acids previously correlated with production of alternative alcohol configurations lie in the active site. eryKR(1) domains mutated at these positions showed an altered stereochemical outcome in reduction of (2R, S)-2-methyl-3-oxopentanoic acid N-acetylcysteamine thioester. The wild-type eryKR(1) domain exclusively gave the (2S, 3R)-3-hydroxy-2-methylpentanoic acid N-acetylcysteamine thioester, while the double mutant (F141W, P144G) gave only the (2S, 3S) isomer, a switch of the alcohol stereochemistry. Mutation of the eryKR(2) domain, in contrast, greatly increased the proportion of the wild-type (2R, 3S)-alcohol product. These data confirm the role of key residues in stereocontrol and suggest an additional way to make rational alterations in polyketide antibiotic structure.  相似文献   

15.
The biosynthesis of the fungal metabolite tenellin from Beauveria bassiana CBS110.25 was investigated in the presence of the epigenetic modifiers 5-azacytidine and suberoyl bis-hydroxamic acid and under conditions where individual genes from the tenellin biosynthetic gene cluster were silenced. Numerous new compounds were synthesized, indicating that the normal predominant biosynthesis of tenellin is just one outcome out of a diverse array of possible products. The structures of the products reveal key clues about the programming selectivities of the tenellin polyketide synthase.  相似文献   

16.
Ketoreductase enzymes are responsible for the generation of hydroxyl stereocentres during the biosynthesis of complex polyketide natural products. Previous studies of isolated polyketide ketoreductases have shown that the stereospecificity of ketoreduction can be switched by mutagenesis of selected active site amino acids. We show here that in the context of the intact polyketide synthase multienzyme the same changes do not alter the stereochemical outcome in the same way. These findings point towards additional factors that govern ketoreductase stereospecificity on intact multienzymes in vivo.  相似文献   

17.
The chalcone synthase superfamily of type III polyketide synthases   总被引:3,自引:0,他引:3  
This review covers the functionally diverse type III polyketide synthase (PKS) superfamily of plant and bacterial biosynthetic enzymes. from the discovery of chalcone synthase (CHS) in the 1970s through the end of 2001. A broader perspective is achieved by a comparison of these CHS-like enzymes to mechanistically and evolutionarily related families of enzymes, including the type I and type II PKSs, as well as the thiolases and beta-ketoacyl synthases of fatty acid metabolism. As CHS is both the most frequently occurring and best studied type III PKS, this enzyme's structure and mechanism is examined in detail. The in vivo functions and biological activities of several classes of plant natural products derived from chalcones are also discussed. Evolutionary mechanisms of type III PKS divergence are considered, as are the biological functions and activities of each of the known and functionally divergent type III PKS enzymc families (currently twelve in plants and three in bacteria). A major focus of this review is the integration of information from genetic and biochemical studies with the unique insights gained from protein X-ray crystallography and homology modeling. This structural approach has generated a number of new predictions regarding both the importance and mechanistic role of various amino acid substitutions observed among functionally diverse type III PKS enzymes.  相似文献   

18.
The excited thioesterase (TE) domain from the vicenistatin polyketide synthase (PKS) efficiently catalyzed the macrolactam formation of the N-acetylcysteamine thioester of the seco-amino acid of the aglycon vicenilactam. This result indicates that the vicenistatin PKS TE domain cyclizes the extended polyketide chain on the ACP domain in the PKS. Furthermore, the simple ethyl ester of the seco-amino acid was also found to be used as a substrate of the TE domain with similar efficiency.  相似文献   

19.
Tsai SC 《Chemistry & biology》2004,11(9):1177-1178
In this issue of Chemistry & Biology, a novel Aldol-Switch mechanism is proposed for the biosynthesis of type III polyketides, which include many antioxidants found in colorful fruits. Based on structural and mutagenesis studies, the Aldol-Switch mechanism suggests that electronic effects balance between two competing cyclization specificities in Type III polyketide synthases. A novel hypothesis is also used to explain stilbenecarboxylate biosynthesis.  相似文献   

20.
Individual modules of modular polyketide synthases (PKSs) such as 6-deoxyerythronolide B synthase (DEBS) consist of conserved, covalently linked domains separated by unconserved intervening linker sequences. To better understand the protein-protein and enzyme-substrate interactions in modular catalysis, we have exploited recent structural insights to prepare stand-alone domains of selected DEBS modules. When combined in vitro, ketosynthase (KS), acyl transferase (AT), and acyl carrier protein (ACP) domains of DEBS module 3 catalyzed methylmalonyl transfer and diketide substrate elongation. When added to a minimal PKS, ketoreductase domains from DEBS modules 1, 2, and 6 showed specificity for the beta-ketoacylthioester substrate, but not for either the ACP domain carrying the polyketide substrate or the KS domain that synthesized the substrate. With insights into catalytic efficiency and specificity of PKS modules, our results provide guidelines for constructing optimal hybrid PKS systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号