共查询到20条相似文献,搜索用时 46 毫秒
1.
Schlangen M Schröder D Schwarz H 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(24):6810-6816
The reactions of small saturated hydrocarbons by gaseous nickel cations NiX+ (X=F, Cl, Br, I) are investigated by means of electrospray ionization mass spectrometry. The halide cations are obtained from solutions of the corresponding Ni(II) salts in water or methanol as solvents. NiF+ is the only Ni(II) halide complex that brings about thermal activation of methane. The branching ratios of the observed reactions with C2H6, C3H8, and nC4H10 are shifted systematically by changing the nature of both the ligand X and the substrate RH. In the elimination of HX (X=F, Cl, Br, I), the formal oxidation state of the metal ion appears to be conserved, and the importance of this reaction channel decreases in going from NiF+ to NiI+. A reversed trend is observed in the losses of small closed-shell neutral molecules, that is, H2, CH4 and C2H6, which dominate the gas-phase ion chemistry of NiI+/RH couples. Additionally, inner-sphere electron-transfer reactions take place for a few systems, that is, the delivery of hydride or methanide ions from the hydrocarbon to NiX+ in the course of which the hydrocarbon is converted to a carbenium ion and the cationic metal complex gives rise to a neutral RNiX molecule (R=H, CH3). This process gains importance with decreasing atomic number of the halides and with increasing the size of the alkane. Thus, it constitutes the major pathway in the reactions of NiF+ with propane and n-butane, whereas it is not observed for any of the NiI+/RH couples investigated. Concerning the regioselectivity of the reactions with propane and n-butane, heterolytic cleavage of secondary carbon--hydrogen bonds is clearly preferred compared to that of primary ones, as revealed by deuterium labeling studies. For the NiF+/C3H8 couple, the selectivity of the hydride transfer is as large as 360 in favor of the secondary positions. Though smaller, large preferences for the activation of secondary C--H bonds are also operative in homolytic bond activation of RH (R=nC3H7, nC4H9). 相似文献
2.
3.
A new mechanism of proton transfer in donor–acceptor complexes with long hydrogen bonds is suggested. The transition is regarded as totally adiabatic. Two closest water molecules that move synchronously by hindered translation to and from the reaction complex are crucial. The water molecules induce a shift of the proton from the donor to the acceptor with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor and acceptor. Expressions for the activation barrier and kinetic hydrogen isotope effect are derived. The general scheme is illustrated with the use of model molecular potentials, and with reference to the excess proton conductivity in aqueous solution. 相似文献
4.
Dhivya Manogaran 《Journal of computational chemistry》2019,40(16):1556-1569
We present a combined quantum chemical and molecular dynamics study of cyclic and noncyclic water n-mers ([(H2O]n, n = 2–6) at four different temperatures and showcase that the dynamics of small water clusters can reproduce the known properties of bulk water reasonably well. We investigate the making and breaking of the water clusters by computing the hydrogen bond strengths, average lifetimes, and relative stabilities, which are important to understand the complex solution dynamics. We compare the behavior of water clusters in the gas phase and in the solution phase as well as the variation in the properties as a function of cluster size and highlight the notably more interesting cluster dynamics of the water trimer when compared to the other water clusters. © 2019 Wiley Periodicals, Inc. 相似文献
5.
研究了辽河减渣四组分在微型高压釜内中临氮热裂化、临氢热裂化和临氢催化加氢反应,考察了供氢剂或供氘剂对上述反应的影响。结果表明,临氮热裂化时沥青质是大量生焦的物种,胶质的生焦能力不显著,芳香分、饱和分不生焦;临氢热裂化沥青质生焦量减少,胶质很少生焦,芳香分和饱和分不生焦;临氢催化加氢时,辽河减渣四组分在临氢反应基础之上,生焦量进一步降低。辽河减渣四组分在临氮热裂化、临氢热裂化和临氢催化加氢过程中添加供氢剂或供氘剂后,生焦反应得到显著抑制,相比之下供氢剂的作用更为明显。三种氢源都具有抑制渣油四组分缩合或缩聚反应的作用。渣油四组分从供氢剂或供氘剂中获得氢(氘)的能力不同,沥青质>胶质>芳香分≈饱和分。就同一组分而言,供氢剂或供氘剂的表观供氢(氘)率随反应条件不同而不同,临氮热裂化> 临氢热裂化>临氢催化加氢过程。供氢剂与供氘剂在所有的过程中都存在明显的动力学效应,并且这个动力学效应随加工环境的不同而变化,在临氮热裂化过程中动力学同位素效应明显。在临氢热裂化过程,尤其是催化加氢裂化过程中动力学效应逐渐变得不明显。2H-NMR分析表明,氘代四氢萘的环烷环中的α位比β位的脱氢选择性高,氘代四氢萘脱氢选择性大小的顺序为:临氮热裂化>临氢热裂化>临氢催化加氢过程。 相似文献
6.
Ashim Nandi Naziha Tarannam Daniela Rodrigues Silva Prof. Dr. Célia Fonseca Guerra Dr. Trevor A. Hamlin Prof. Sebastian Kozuch 《Chemphyschem》2021,22(18):1857-1862
Some nitrile-boron halide adducts exhibit a double-well potential energy surface with two distinct minima: a “long bond” geometry (LB, a van der Waals interaction mostly based on electrostatics, but including a residual charge transfer component) and a “short bond” structure (SB, a covalent dative bond). This behavior can be considered as a “weak” form of bond stretch isomerism. Our computations reveal that complexes RCN−BX3 (R=CH3, FCH2, BrCH2, and X=Cl, Br) exhibit a fast interconversion from LB to SB geometries even close to the absolute zero thanks to a boron atom tunneling mechanism. The computed half-lives of the meta-stable LB compounds vary between minutes to nanoseconds at cryogenic conditions. Accordingly, we predict that the long bond structures are practically impossible to isolate or characterize, which agrees with previous matrix-isolation experiments. 相似文献
7.
A new mechanism and formalism for proton transfer in donor-acceptor complexes with long hydrogen bonds introduced recently [1], is applied to a proton transfer in liquid water. Structural diffusion of hydroxonium ions is regarded as totally adiabatic process, with synchronous hindered translation of two closest water molecules to and from the reaction complex as crucial steps. The water molecules induce a gated shift of the proton from the donor to the acceptor in the double-well potential with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor and acceptor. The short-range and long-range proton transfer as structural diffusion of Zundel complexes is also considered. The theoretical formalism is illustrated with the use of Morse, exponential, and harmonic molecular potentials. This approach is extended to proton transfer in strongly hydrogen-bonded donor-acceptor complexes. In contrast to the above model [1], the short hydrogen bond between the donor and acceptor moieties, however, completely erodes the barrier along the proton transfer mode. This introduces some physical pattern differences from proton transfer reactions in truly double-well potentials with a finite proton transfer barrier at the transition configuration with respect to the environmental nuclear coordinates. The differences apply particularly to the origin of the kinetic isotope effect. We discuss explicitly details of the excess proton conductivity in aqueous solution, but the concepts and formalism apply broadly to acid-base reactions, proton conduction channels, and other strongly hydrogen-bonded O- and N-proton donor-acceptor systems. 相似文献
8.
Substrate‐Dependent H/D Kinetic Isotope Effects and the Role of the Di(μ‐oxo)diiron(IV) Core in Soluble Methane Monooxygenase: A Theoretical Study 下载免费PDF全文
Soluble methane monooxygenase (sMMO) is an enzyme that converts alkanes to alcohols using a di(μ‐oxo)diiron(IV) intermediate Q at the active site. Very large kinetic isotope effects (KIEs) indicative of significant tunneling are observed for the hydrogen transfer (H‐transfer) of CH4 and CH3CN; however, a relatively small KIE is observed for CH3NO2. The detailed mechanism of the enzymatic H‐transfer responsible for the diverse range of KIEs is not yet fully understood. In this study, variational transition‐state theory including the multidimensional tunneling approximation is used to calculate rate constants to predict KIEs based on the quantum‐mechanically generated intrinsic reaction coordinates of the H‐transfer by the di(μ‐oxo)diiron(IV) complex. The results of our study reveal that the role of the di(μ‐oxo)diiron(IV) core and the H‐transfer mechanism are dependent on the substrate. For CH4, substrate binding induces an electron transfer from the oxygen to one FeIV center, which in turn makes the μ‐O ligand more electrophilic and assists the H‐transfer by abstracting an electron from the C?H σ orbital. For CH3CN, the reduction of FeIV to FeIII occurs gradually with substrate binding and H‐transfer. The charge density and electrophilicity of the μ‐O ligand hardly change upon substrate binding; however, for CH3NO2, there seems to be no electron movement from μ‐O to FeIV during the H‐transfer. Thus, the μ‐O ligand appears to abstract a proton without an electron from the C?H σ orbital. The calculated KIEs for CH4, CH3CN, and CH3NO2 are 24.4, 49.0, and 8.27, respectively, at 293 K, in remarkably good agreement with the experimental values. This study reveals that diverse KIE values originate mainly from tunneling to the same di(μ‐oxo)diiron(IV) core for all substrates, and demonstrate that the reaction dynamics are essential for reproducing experimental results and understanding the role of the diiron core for methane oxidation in sMMO. 相似文献
9.
Mégane Valero Daniel Becker Dr. Kristof Jess Remo Weck Dr. Jens Atzrodt Dr. Thomas Bannenberg Dr. Volker Derdau Prof. Dr. Matthias Tamm 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(26):6517-6522
For the first time, a catalytic protocol for a highly selective hydrogen isotope exchange (HIE) of phenylacetic acid esters and amides under very mild reaction conditions is reported. Using a homogeneous iridium catalyst supported by a bidentate phosphine-imidazolin-2-imine P,N ligand, the HIE reaction on a series of phenylacetic acid derivatives proceeds with high yields, high selectivity, and with deuterium incorporation up to 99 %. The method is fully adaptable to the specific requirements of tritium chemistry, and its effectiveness was demonstrated by direct tritium labeling of the fungicide benalaxyl and the drug camylofine. Further insights into the mechanism of the HIE reaction with catalyst 1 have been provided utilizing DFT calculations, NMR studies, and X-ray diffraction analysis. 相似文献
10.
Arthur W. Snow 《Journal of polymer science. Part A, Polymer chemistry》2017,55(1):93-106
Bulk free radical polymerization of the monomer series CH2 = C(CH3)C(O)OCH2CH3‐n Cln , n = 1, 2, 3, yields an unexpectedly crosslinked product with a crosslink density that increases with decreasing chlorine content of the respective monomer (n = 3 < n = 2 < n = 1). This chlorine substituent effect is investigated by correlation with chain transfer constant measurements for four homologous series of chloroalkyl compounds (chloroethyl acetates (CH3C(O)OCH2CH3‐n Cln , n = 1,2,3); chloromethanes (CH4‐n Cln , n = 2,3,4) and CD2Cl2 and CDCl3 analogs; butyl chloride isomers (n‐ , iso‐ , sec‐, tert‐) and tert‐C4D9Cl analog; and nine chloroethanes (C2Hn ?6Cln , n = 1–6)) in a methyl methacrylate polymerization. The pattern conveyed by the magnitude of chain transfer constants and deuterium isotope effects is consistent with a vicinal chlorine effect (i.e., chlorine activation of a vicinal hydrogen for abstraction) to account for the relative activities of the four series of model compounds and for the propensity of the chloroethyl methacrylates to crosslink in a bulk free radical polymerization. The chloroalkyl moiety's contribution to chain transfer is relatively modest (≤10?4), but, when incorporated as a monomer pendant group in free radical polymerizations, it is effective in broadening molecular weight to the extent of resulting in a crosslinked polymer. Published 2016.? J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 93–106 相似文献
11.
Dr. Greco González Miera Aitor Bermejo López Dr. Elisa Martínez-Castro Prof. Per-Ola Norrby Prof. Belén Martín-Matute 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(10):2631-2636
1,4- and 1,5-diols undergo cyclodehydration upon treatment with cationic N-heterocyclic carbene (NHC)–IrIII complexes to give tetrahydrofurans and tetrahydropyrans, respectively. The mechanism was investigated, and a metal-hydride-driven pathway was proposed for all substrates, except for very electron-rich ones. This contrasts with the well-established classical pathways that involve nucleophilic substitution. 相似文献
12.
13.
Car-Parrinello and path integrals molecular dynamics (CPMD and PIMD) simulations were carried out for the 10π-electron aromatic systems: 2-hydroxy-2,4,6-cycloheptatrien-1-one, commonly known as Tropolone (I) and 2-hydroxy-2,4,6-cycloheptatriene-1-thione, called Thiotropolone (II) in vacuo and in the solid state. The extremely fast proton transfer (FPT) and “prototropy” tautomerism in the keto-enol (thione-enethiol) systems have been analyzed on the basis of CPMD and PIMD methods level. Comparisons of two-dimensional (2D) free-energy landscapes of reaction coordinate δ-parameter and RO…O or RO…S distances shows that the OH… tautomer to be more favorable in the Thiotropolone. The hydrogen between the oxygen and the sulfur atoms adopts a starkly asymmetrical position in the double potential well. The values of the energy barriers for the FPT were calculated and suggested a strong hydrogen bond with low barrier for FPT mechanism. These studies and the 2D average index of π-delocalization 〈λ〉 landscape of time evolutions of RO1…O2 and RC7O2 or RC7S1 distances for the both crystals indicate that hydrogen bonds in the crystals of Tropolone (I) and Thiotropolone (II) have characteristic properties for the type of bonding model resonance-assisted hydrogen bonds and also low-barrier hydrogen bonds. In the crystal of the Thiotropolone (II), we found the hydrogen bond O H…S existing without the equilibrium of the two tautomers whereas in the crystal of the Tropolone (I) has been confirmed the hydrogen bond O H…O existing with the equilibrium of the two tautomers. It was also found the significant differences in frequency, speed, and the image of the FPT in the studied crystals. © 2018 Wiley Periodicals, Inc. 相似文献
14.
Three‐Way Cooperativity in d8 Metal Complexes with Ligands Displaying Chemical and Redox Non‐Innocence 下载免费PDF全文
Dr. Naina Deibel Stephan Hohloch Dr. David Schweinfurth Fritz Weisser Dr. Anita Grupp Prof. Dr. Biprajit Sarkar 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(46):15178-15187
Reversible proton‐ and electron‐transfer steps are crucial for various chemical transformations. The electron‐reservoir behavior of redox non‐innocent ligands and the proton‐reservoir behavior of chemically non‐innocent ligands can be cooperatively utilized for substrate bond activation. Although site‐decoupled proton‐ and electron‐transfer steps are often found in enzymatic systems, generating model metal complexes with these properties remains challenging. To tackle this issue, we present herein complexes [(cod?H)M(μ‐L2?) M (cod?H)] (M=PtII, [ 1 ] or PdII, [ 2 ], cod=1,5‐cyclooctadiene, H2L=2,5‐di‐[2,6‐(diisopropyl)anilino]‐1,4‐benzoquinone), in which cod acts as a proton reservoir, and L2? as an electron reservoir. Protonation of [ 2 ] leads to an unusual tetranuclear complex. However, [ 1 ] can be stepwise reversibly protonated with up to two protons on the cod?H ligands, and the protonated forms can be stepwise reversibly reduced with up to two electrons on the L2? ligand. The doubly protonated form of [ 1 ] is also shown to react with OMe? leading to an activation of the cod ligands. The site‐decoupled proton and electron reservoir sources work in tandem in a three‐way cooperative process that results in the transfer of two electrons and two protons to a substrate leading to its double reduction and protonation. These results will possibly provide new insights into developing catalysts for multiple proton‐ and electron‐transfer reactions by using metal complexes of non‐innocent ligands. 相似文献
15.
Dr. Xiao-Xi Li Dr. Xiaoyan Lu Dr. Jae Woo Park Dr. Kyung-Bin Cho Dr. Wonwoo Nam 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(69):17495-17503
High-valent iron-imido complexes can perform C−H activation and sulfimidation reactions, but are far less studied than the more ubiquitous iron-oxo species. As case studies, we have looked at a recently published iron(V)-imido ligand π-cation radical complex, which is formally an iron(VI)-imido complex [FeV(NTs)(TAML+.)] ( 1 ; NTs=tosylimido), and an iron(V)-imido complex [FeV(NTs)(TAML)]− ( 2 ). Using a theoretical approach, we found that they have multiple energetically close-lying electromers, sometimes even without changing spin states, reminiscent of the so-called Compound I in Cytochrome P450. When studying their reactivity theoretically, it is indeed found that their electronic structures may change to perform efficient oxidations, emulating the multi-spin state reactivity in FeIVO systems. This is actually in contrast to the known [FeV(O)(TAML)]− species ( 3 ), where the reactions occur only on the ground spin state. We also looked into the whole reaction pathway for the C−H bond activation of 1,4-cyclohexadiene by these intermediates to reproduce the experimentally observed products, including steps that usually attract no interest (neither theoretically nor experimentally) due to their non-rate-limiting status and fast reactivity. A new “clustering non-rebound mechanism” is presented for this C−H activation reaction. 相似文献
16.
An ab initio molecular dynamics approach is combined with the semiclassical tunneling method of Makri and Miller, which is applied to estimations of tunneling splitting in the umbrella inversion of ammonia and the intramolecular hydrogen transfer in malonaldehyde. In the application to malonaldehyde, effects of multidimensionality are examined by assigning quantum zero-point energies only to significant vibrational modes and changing the amount of energy given to other degrees of freedom. The calculated tunneling splitting values are in good agreement with the corresponding experimental values for both molecules. 相似文献
17.
Parichart Suwannakham Sermsiri Chaiwongwattana Kritsana Sagarik 《International journal of quantum chemistry》2015,115(8):486-501
The dynamics and mechanisms of proton dissociation and transfer in hydrated phosphoric acid (H3PO4) clusters under excess proton conditions were studied based on the concept of presolvation using the H3PO4–H3O+–nH2O complexes (n = 1–3) as the model systems and ab initio calculations and Born–Oppenheimer molecular dynamics (BOMD) simulations at the RIMP2/TZVP level as model calculations. The static results showed that the smallest, most stable intermediate complex for proton dissociation (n = 1) is formed in a low local‐dielectric constant environment (e.g., ε = 1), whereas proton transfer from the first to the second hydration shell is driven by fluctuations in the number of water molecules in a high local‐dielectric constant environment (e.g., ε = 78) through the Zundel complex in a linear H‐bond chain (n = 3). The two‐dimensional potential energy surfaces (2D‐PES) of the intermediate complex (n = 1) suggested three characteristic vibrational and 1H NMR frequencies associated with a proton moving on the oscillatory shuttling and structural diffusion paths, which can be used to monitor the dynamics of proton dissociation in the H‐bond clusters. The BOMD simulations over the temperature range of 298–430 K validated the proposed proton dissociation and transfer mechanisms by showing that good agreement between the theoretical and experimental data can be achieved with the proposed rate‐determining processes. The theoretical results suggest the roles played by the polar solvent and iterate that insights into the dynamics and mechanisms of proton transfer in the protonated H‐bond clusters can be obtained from intermediate complexes provided that an appropriate presolvation model is selected and that all of the important rate‐determining processes are included in the model calculations. © 2015 Wiley Periodicals, Inc. 相似文献
18.
19.
Benderskii V. A. Vetoshkin E. V. Irgibaeva I. S. Trommsdorff H.-P. 《Russian Chemical Bulletin》2001,50(3):366-375
The six-dimensional torsion-vibration Hamiltonian of the H2O2 molecule and its H/D- and 18O/16O-isotopomers is derived. The Hamiltonian includes the kinetic energy operator, which depends on the tunneling coordinate, and the potential energy surface represented as a quartic polynomial with respect to the small-amplitude transverse coordinates. Parameters of the Hamiltonian were obtained from DFT calculations of the equilibrium geometries, eigenvectors, and eigenfrequencies of normal vibrations at the stationary points corresponding to the ground state and both the cis- and trans-transition states, carried out with the B3LYP density functional and 6-311+G(2d,p) basis set. The quantum dynamics problem is solved using the perturbative instanton approach generalized for the excited states situated above the barrier top. Vibration-tunneling spectra are calculated for the ground state and low-lying excited states with energies below 2000 cm–1. Strong kinematic and squeezed potential couplings between the large-amplitude torsional motion and bending modes are shown to be responsible for the vibration-assisted tunneling and for the dependence of tunneling splittings on the quantum numbers of small-amplitude transverse vibrations. Mode-specific isotope effects are predicted. 相似文献
20.
Neutral hydroxymethylene HCOH is an important intermediate in several chemical reactions; however, it is difficult to observe due to its high reactivity. In this work, neutral hydroxymethylene and formaldehyde were generated by charge exchange neutralization of their respective ionic counterparts and then were reionized and detected as positive‐ion recovery signals in neutralization–reionization mass spectrometry in a magnetic sector instrument of BEE geometry. The reionized species were characterized by their subsequent collision‐induced dissociation mass spectra. The transient hydroxymethylene neutral was observed to isomerize to formaldehyde with an experimental time span exceeding 13.9 µs. The vertical neutralization energy of the HCOH+? ion has also been assayed using charge transfer reactions between the fast ions and stationary target gases of differing ionization energy. The measured values match the result of ab initio calculations at the QCISD/6‐311 + G(d,p) and CCSD(T)/6‐311 + + G(3df,2p) levels of theory. Neutral hydroxymethylene was also produced by proton transfer from CH2OH+ to a strong base such as pyridine, confirmed by appropriate isotopic labeling. There is a kinetic isotope effect (KIE) for H+ versus D+ transfer from the C atom of the hydroxymethyl cation of ~3, consistent with a primary KIE of a nearly thermoneutral reaction. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献