首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of nucleobases (adenine or purine) with a metallic salt in the presence of potassium oxalate in an aqueous solution yields one-dimensional complexes of formulas [M(mu-ox)(H(2)O)(pur)](n) (pur = purine, ox = oxalato ligand (2-); M = Cu(II) [1], Co(II) [2], and Zn(II) [3]), [Co(mu-ox)(H(2)O)(pur)(0.76)(ade)(0.24)](n)(4) and ([M(mu-ox)(H(2)O)(ade)].2(ade).(H(2)O))(n) (ade = adenine; M = Co(II) [5] and Zn(II) [6]). Their X-ray single-crystal structures, variable-temperature magnetic measurements, thermal behavior, and FT-IR spectroscopy are reported. The complexes 1-4 crystallize in the monoclinic space group P2(1)/a (No. 14) with similar crystallographic parameters. The compounds 5 and 6 are also isomorphous but crystallize in the triclinic space group P (No. 2). All compounds contain one-dimensional chains in which cis-[M(H(2)O)(L)](2+) units are bridged by bis-bidentate oxalato ligands with M(.)M intrachain distances in the range 5.23-5.57 A. In all cases, the metal atoms are six-coordinated by four oxalato oxygen atoms, one water molecule, and one nitrogen atom from a terminal nucleobase, building distorted octahedral MO(4)O(w)N surroundings. The purine ligand is bound to the metal atom through the most basic imidazole N9 atom in 1-4, whereas in 5 and 6 the minor groove site N3 of the adenine nucleobase is the donor atom. The crystal packing of compounds 5 and 6 shows the presence of uncoordinated adenine and water crystallization molecules. The cohesiveness of the supramolecular 3D structure of the compounds is achieved by means of an extensive network of noncovalent interactions (hydrogen bonds and pi-pi stacking interactions). Variable-temperature magnetic susceptibility measurements of the Cu(II) and Co(II) complexes in the range 2-300 K show the occurrence of antiferromagnetic intrachain interactions.  相似文献   

2.
The reaction of M(ox) x 2H(2)O (M = Co(II), Ni(II)) or K(2)(Cu(ox)(2)) x 2H(2)O (ox = oxalate dianion) with n-ampy (n = 2, 3, 4; n-ampy = n-aminopyridine) and potassium oxalate monohydrate yields one-dimensional oxalato-bridged metal(II) complexes which have been characterized by FT-IR spectroscopy, variable-temperature magnetic measurements, and X-ray diffraction methods. The complexes M(mu-ox)(2-ampy)(2) (M = Co (1), Ni (2), Cu (3)) are isomorphous and crystallize in the monoclinic space group C2/c (No. 15), Z = 4, with unit cell parameters for 1 of a = 13.885(2) A, b = 11.010(2) A, c = 8.755(1) A, and beta = 94.21(2) degrees. The compounds M(mu-ox)(3-ampy)(2).1.5H(2)O (M = Co (4), Ni (5), Cu (6)) are also isomorphous and crystallize in the orthorhombic space group Pcnn (No. 52), Z = 8, with unit cell parameters for 6 of a = 12.387(1), b = 12.935(3), and c = 18.632(2) A. Compound Co(mu-ox)(4-ampy)(2) (7) crystallizes in the space group C2/c (No. 15), Z = 4, with unit cell parameters of a = 16.478(3) A, b = 5.484(1) A, c = 16.592(2) A, and beta = 117.76(1) degrees. Complexes M(mu-ox)(4-ampy)(2) (M = Ni (8), Cu (9)) crystallize in the orthorhombic space group Fddd (No. 70), Z = 8, with unit cell parameters for 8 of a = 5.342(1), b = 17.078(3), and c = 29.469(4) A. All compounds are comprised of one-dimensional chains in which M(n-ampy)(2)(2+) units are sequentially bridged by bis-bidentate oxalato ligands with M.M intrachain distances in the range of 5.34-5.66 A. In all cases, the metal atoms are six-coordinated to four oxygen atoms, belonging to two bridging oxalato ligands, and the endo-cyclic nitrogen atoms, from two n-ampy ligands, building distorted octahedral surroundings. The aromatic bases are bound to the metal atom in cis (1-6) or trans (7-9) positions. Magnetic susceptibility measurements in the temperature range of 2-300 K show the occurrence of antiferromagnetic intrachain interactions except for the compound 3 in which a weak ferromagnetic coupling is observed. Compound 7 shows spontaneous magnetization below 8 K, which corresponds to the presence of spin canted antiferromagnetism.  相似文献   

3.
The first 3D coordination polymer containing a nucleobase as a bridging ligand, [[Cu2(mu-ade)4(H2O)2][Cu(ox)(H2O)]2 x approximately 14H2O]n (1), has been synthesized by reaction of adenine (Hade) with a basic solution of K2[Cu(ox)2] x 2H2O (ox = oxalato dianion). Compound 1 crystallizes in the trigonal space group R3 with a = b = 31.350(1) angstroms, c = 14.285(1) angstroms, V = 12158.7(10) angstroms3, and Z = 9. X-ray analysis shows a covalent 3D network in which the copper(II) centers are bridged by tridentate mu-N3,N7,N9 adeninate ligands. The compound has relatively large, nanometer-sized tubes associated with the self-assembly process directed solely by metal-ligand interactions. The covalent 3D framework remains intact upon removal of the guest water molecules trapped in the nanotubes. Magnetic measurements indicate an overall antiferromagnetic behavior of the compound.  相似文献   

4.
Reactions of adenine with water-soluble oxalato complexes at acidic pH give the compounds (1H,9H-ade)2[Cu(ox)2(H2O)] (1) [H2ade=adeninium cation (1+), ox=oxalato ligand (2-)] and (3H,7H-ade)2[M(ox)2(H2O)2].2H2O [M(II)=Co (2), Zn (3)]. The X-ray single crystal analyses show that the supramolecular architecture of all compounds is built up of anionic sheets of metal-oxalato-water complexes and ribbons of cationic nucleobases among them to afford lamellar inorganic-organic hybrid materials. The molecular recognition process between the organic and the inorganic frameworks determines the isolated tautomeric form of the adeninium cation found in the crystal structures: the canonical 1H,9H for compound 1, and the first solid-state characterized 3H,7H-adeninium tautomer for compounds 2 and 3. Density functional theory calculations have been performed to study the stability of the protonated nucleobase forms and their hydrogen-bonded associations by comparing experimental and theoretical results.  相似文献   

5.
The reaction in water of the N-benzyliminodiacetate-copper(II) chelate ([Cu(NBzIDA)]) and the adenine:thymine base pair complex (AdeH:ThyH) with a Cu/NBzIDA/AdeH/ThyH molar ratio of 2:2:1:1 yields [Cu(2)(NBzIDA)(2)(H(2)O)(2)(mu-N7,N9-Ade(N3)H)].3H(2)O and free ThyH. The compound has been studied by thermal, spectral, and X-ray diffraction methods. In the asymmetric dinuclear complex units both Cu(II) atoms exhibit a square pyramidal coordination, where the four closest donors are supplied by NBzIDA in a mer-tridentate conformation and the N7 or N9 donors of AdeH, which is protonated at N3. The mu-N7,N9 bridge represents a new coordination mode for nonsubstituted AdeH, except for some adeninate(1-)-[methylmercury(II)] derivatives studied earlier. The dinuclear complex is stabilized by the Cu-N7 and Cu-N9 bonds and N6-H(exocyclic)...O(carboxyl) and N3-H(heterocyclic)...O(carboxyl) interligand interactions, respectively. The structure of the new compound differs from that of the mononuclear compound [Cu(NBzIDA)(Ade(N9)H)(H(2)O)].H(2)O, in which the unusual Cu-N3(AdeH) bond is stabilized by a N9-H...O(carboxyl) interligand interaction and where alternating benzyl-AdeH intermolecular pi,pi-stacking interactions produce infinite stacked chains. The possibility for ThyH to be involved in the molecular recognition between [Cu(NBzIDA)] and the AdeH:ThyH base pair is proposed.  相似文献   

6.
By utilizing the novel metalloligand l(Cu), [Cu(2,4-pydca)(2)](2)(-) (2,4-pydca(2)(-) = pyridine-2,4-dicarboxylate), which possesses two kinds of coordination groups, selective bond formation with the series of the first-period transition metal ions (Mn(ii), Fe(ii), Co(ii), Cu(ii), and Zn(ii)) has been accomplished. depending on the coordination mode of 4-carboxylate with Co(ii), Cu(ii), and Zn(ii) ions, L(Cu) forms a one-dimensional (1-d) assembly with a repeating motif of [-M-O(2)C-(py)N-Cu-N(py)-Co(2)-]: {[ZnL(Cu)(H(2)O)(3)(DMF)].DMF}(N)() (2), [ZnL(Cu)(H(2)O)(2)(MeOH)(2)](N)() (3), and {[ML(Cu)(H(2)O)(4)].2H(2)O}(N)() (M = Co (4), Cu (5), Zn (6)). the use of a terminal ligand of 2,2'-bipyridine (2,2'-bpy), in addition to the cu(ii) ion, gives a zigzag 1-d assembly with the similar repeating unit as 4-6: {[Cu(2,2'-bpy)L(Cu)].3H(2)O}(N)() (9). on the other hand, for Mn(ii) and Fe(ii) ions, L(Cu) shows a 2-carboxylate bridging mode to form an another 1-d assembly with a repeating motif of [-M-O-C-O-CU-O-C-O-]: [ML(Cu)(H(2)O)(4)](N)() (M = Mn (7), Fe (8)). this selectivity is related to the strength of lewis basicity and the electrostatic effect of L(Cu) and the irving-williams order on the present metal ions. according to their bridging modes, a variety of magnetic properties are obtained: 4, 5, and 9, which have the 4-carboxypyridinate bridge between magnetic centers, have weak antiferromagnetic interaction, whereas 7 and 8 with the carboxylate bridge between magnetic centers reveal 1-d ferromagnetic behavior (Cu(II)-M(II); M(II) = Mn(II), J/k(B) = 0.69 K for 7; M(II) = Fe(II), J/k(B) = 0.71 K for 8).  相似文献   

7.
The Cu(SO(3))(4)(7-) anion, which consists of a tetrahedrally coordinated Cu(I) centre coordinated to four sulfur atoms, is able to act as a multidentate ligand in discrete and infinite supramolecular species. The slow oxidation of an aqueous solution of Na(7)Cu(SO(3))(4) yields a mixed oxidation state, 2D network of composition Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O. The addition of Cu(II) and 2,2'-bipyridine to an aqueous Na(7)Cu(SO(3))(4) solution leads to the formation of a pentanuclear complex of composition {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(+); a combination of hydrogen bonding and π-π stacking interactions leads to the generation of infinite parallel channels that are occupied by disordered nitrate anions and water molecules. A pair of Cu(SO(3))(4)(7-) anions each act as a tridentate ligand towards a single Mn(II) centre when Mn(II) ions are combined with an excess of Cu(SO(3))(4)(7-). An anionic pentanuclear complex of composition {[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)} is formed when Fe(II) is added to a Cu(+)/SO(3)(2-) solution. Hydrated ferrous [Fe(H(2)O)(6)(2+)] and sodium ions act as counterions for the complexes and are responsible for the formation of an extensive hydrogen bond network within the crystal. Magnetic susceptibility studies over the temperature range 2-300 K show that weak ferromagnetic coupling occurs within the Cu(II) containing chains of Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O, while zero coupling exists in the pentanuclear cluster {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(NO(3))·H(2)O. Weak Mn(II)-O-S-O-Mn(II) antiferromagnetic coupling occurs in Na(H(2)O)(6){[Cu(I)(SO(3))(4)][Mn(II)(H(2)O)(2)](3)}, the latter formed when Mn was in excess during synthesis. The compound, Na(3)(H(2)O)(6)[Fe(II)(H(2)O)(6)](2){[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)}·H(2)O, contained trace magnetic impurities that affected the expected magnetic behaviour.  相似文献   

8.
Three copper(II)-rhenium(IV) bimetallic complexes of formula [ReCl(4)(mu-ox)Cu(phen)(2)] (1), [ReCl(4)(mu-ox)Cu(phen)(2)].CH(3)CN (2), and [ReCl(4)(mu-ox)Cu(terpy) (H(2)O)][ReCl(4)(mu-ox)Cu(terpy)(CH(3)CN)] (3) (ox = oxalate anion, phen = 1,10-phenanthroline, and terpy = 2,2':6,2"- terpyridine) have been synthesized and their crystal structures determined by single-crystal X-ray diffraction. Complex 1 crystallizes in the triclinic system, space group P(-1), with a = 9.776(2), b = 11.744(3), c = 14.183(3) A, alpha =102.09(2) degrees, beta = 109.42(2) degrees, gamma = 107.11(2) degrees, and Z = 2, whereas 2 and 3 crystallize in the monoclinic system, space groups P2(1)/n and P2(1)/c, respectively, with a = 12.837(3), b = 17.761(4), c = 12.914(3) A, beta = 91.32(2) degrees, and Z = 4 for 2, and a = 8.930(2), b = 18.543(4), c = 27.503(6) A, beta = 94.67(2) degrees, and Z = 4 for 3. The structures of 1 and 2 are made up of neutral [ReCl(4)(mu-ox)Cu(phen)(2)] bimetallic units. Re(IV) and Cu(II) metal ions exhibit distorted octahedral coordination geometries, being bridged by a bis(bidentate) oxalato ligand. The presence of acetonitrile molecules of crystallization in 2 causes a somewhat greater separation between the bimetallic complexes and a different packing of these units in the crystal structure with respect to 1. The copper-rhenium separation across oxalato is 5.628(2) in 1 and 5.649(3) A in 2. The structure of 3 is made up of two different and neutral bimetallic units, [ReCl(4)(mu-ox)Cu(terpy)(H(2)O)] and [ReCl(4)(mu-ox)Cu(terpy)(CH(3)CN)]. In the first one, the oxalate group behaves as a bis(bidentate) ligand occupying one equatorial and one axial position in the elongated octahedral environment of Cu(II). The water molecule is axially coordinated. In the second one, the oxalate group behaves as a bidentate/monodentate ligand occupying the axial position in the square pyramidal environment of Cu(II). The acetonitrile molecule occupies a basal coordination position around the copper atom. These units are arranged in such a way that a chlorine atom of the first unit (Cl(1)) points toward the copper atom (Cu(2))of the second one (3.077(2) A for Cl(1)(.)Cu(2)), forming a tetranuclear species. The copper-rhenium separation across bis(didentate) oxalato is 5.504(3) A, whereas that through bidentate/monodentate oxalato is 5.436(2) A. The magnetic behavior of 2 and 3 has been investigated over the temperature range 1.8-300 K. A very weak and nearly identical antiferromagnetic coupling between Re(IV) and Cu(II) through bis(bidentate) oxalato occurs in 2 (J = -0.90 cm(-1)) and 3 (J = -0.83 cm(-1)); it is ferromagnetic in 3 through both the bidentate-monodentate oxalato (J = +5.60 cm(-1)) and the chloro (J = +0.70 cm(-1)) bridges.  相似文献   

9.
In acidic aqueous solution, a cobalt(III) complex containing monodentate N(9)-bound adeninate (ade(-)), cis-[Co(ade-kappaN(9))Cl(en)(2)]Cl (cis-[1]Cl), underwent protonation to the adeninate moiety without geometrical isomerization or decomposition of the Co(III) coordination sphere, and complexes of cis-[CoCl(Hade)(en)(2)]Cl(2) (cis-[2]Cl(2)) and cis-[Co(H(2)ade)Cl(en)(2)]Cl(3) (cis-[3]Cl(3)) could be isolated. The pK(a) values of the Hade and H(2)ade(+) complexes are 6.03(1) and 2.53(12), respectively, at 20 degrees C in 0.1 M aqueous NaCl. The single-crystal X-ray analyses of cis-[2]Cl(2).0.5H(2)O and cis-[3]Cl(2)(BF(4)).H(2)O revealed that protonation took place first at the adeninate N(7) and then at the N(1) atoms to form adenine tautomer (7H-Hade-kappaN(9)) and cationic adeninium (1H,7H-H(2)ade(+)-kappaN(9)) complexes, respectively. On the other hand, addition of NaOH to an aqueous solution of cis-[1]Cl afforded a mixture of geometrical isomers of the hydroxo-adeninato complex, cis- and trans-[Co(ade-kappaN(9))(OH)(en)(2)](+). The trans-isomer of chloro-adeninato complex trans-[Co(ade-kappaN(9))Cl(en)(2)]BF(4) (trans-[1]BF(4)) was synthesized by a reaction of cis-[2](BF(4))(2) and sodium methoxide in methanol. This isomer in acidic aqueous solution was also stable toward isomerization, affording the corresponding adenine tautomer and adeninium complexes (pK(a) = 5.21(1) and 2.48(9), respectively, at 20 degrees C in 0.1 M aqueous NaCl). The protonated product of trans-[Co(7H-Hade-kappaN(9))Cl(en)(2)](BF(4))(2).H(2)O (trans-[2](BF(4))(2).H(2)O) could also be characterized by X-ray analysis. Furthermore, the hydrogen-bonding interactions of the adeninate/adenine tautomer complexes cis-[1]BF(4), cis-[2](BF(4))(2), and trans-[2](BF(4))(2) with 1-cyclohexyluracil in acetonitrile-d(3) were investigated by (1)H NMR spectroscopy. The crystal structure of trans-[Co(ade)(H(2)O)(en)(2)]HPO(4).3H(2)O, which was obtained by a reaction of trans-[Co(ade)(OH)(en)(2)]BF(4) and NaH(2)PO(4), was also determined.  相似文献   

10.
Two one-dimensional (1D) manganese complexes, [Mn(2)(naphtmen)(2)(L)](ClO(4))·2Et(2)O·2MeOH·H(2)O (1) and [Mn(2)(naphtmen)(2)(HL)](ClO(4))(2)·MeOH (2), were synthesized by using a bridging ligand with a nucleobase moiety, 6-amino-9-β-carboxyethylpurine, and a salen-type manganese(III) dinuclear complex, [Mn(2)(naphtmen)(2)(H(2)O)(2)](ClO(4))(2) (naphtmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(naphthylideneiminato) dianion). In 1 and 2, the carboxylate-bridged Mn(III) dinuclear units are alternately linked by two kinds of weak Mn···O interactions into 1D chains. As a result, canted antiferromagnetic and ferromagnetic interactions are alternately present along the chains, leading to a 1D chain with non-cancellation of anisotropic spins. Since the chains connected via H-bonds between nucleobase moieties are magnetically isolated, both 1 and 2 act as single-chain magnets (SCMs). More importantly, this result shows the smaller canting angles hinder long-range ordering in favor of SCM dynamics.  相似文献   

11.
Reaction of in situ generated copper(II)-monosubstituted Keggin polyoxometalates and copper(II)-bipyridine-oxalate complexes in the corresponding alkaline acetate buffer led to the formation of hybrid metal organic-inorganic compounds K(2)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(H(2)O)(2)(mu-ox)}(2)].14H(2)O (1), K(14)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}](2)[SiW(11)O(39)Cu(H(2)O)].55H(2)O (2), (NH(4))(4)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}].10H(2)O (3), and Rb(4)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}].10H(2)O (4). Their structures have been established by single-crystal X-ray diffraction. The main structural feature of these compounds is the presence of copper(II)-monosubstituted alpha-Keggin polyoxoanions as inorganic building blocks, on which the mu-oxalatodicopper metalorganic blocks are supported. Compound 1contains the discrete hybrid polyanion [{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(H(2)O)(2)(mu-ox)}(2)](2)(-), whereas the polymeric hybrid polyanion [{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}(2)](n)(4)(n)(-) gives a monodimensional character to compounds 2-4. Magnetic and EPR results are discussed with respect to the crystal structure of the compounds. DFT calculations on both the [Cu(2)(bpy)(2)(H(2)O)(4)(mu-ox)](2+) cationic complex and the metalorganic blocks have been performed in order to determine the optimized geometry and the magnetic coupling constants, respectively.  相似文献   

12.
Three new compounds of formula {[Cu(gua)(H(2)O)(3)](BF(4))(SiF(6))(1/2)}(n) (1), {[Cu(gua)(H(2)O)(3)](CF(3)SO(3))(2).H(2)O}(n) (2) and [Cu(gua)(2)(H(2)O)(HCOO)]ClO(4).H(2)O.1/2HCOOH] (3) [gua = 2-amino-1H-purin-6(9H)-one] showing the unprecedented coordination of neutral guanine, have been synthesised and structurally characterized. The structures of the compounds 1 and 2 contain uniform copper(II) chains of formula [Cu(gua)(H(2)O)(3)](n)(2n+), where the copper atoms are bridged by guanine ligands coordinated via N(3) and N(7). The electroneutrality is achieved by uncoordinated tetrafluoroborate and hexafluorosilicate (1) and triflate (2). Each copper atom in 1 and 2 is five-coordinated in a distorted square pyramidal environment: two water molecules in trans positions and the N(3) and N(7a) nitrogen atoms of two guanine ligands build the basal plane whereas a water molecule fills the axial position. The values of the copper-copper separation across the bridging guanine ligand are 7.183(1) (1) and 7.123(1) A (2). is an ionic salt whose structure is made up of mononuclear [Cu(gua)(2)(H(2)O)(HCOO)](+) cations and perchlorate anions plus water and formic acid as crystallization molecules. The two guanine ligands in the cation are coordinated to the copper centre through the N(9) atom. The copper atom in 3 is four-coordinated with two monodentate guanine molecules in the trans position, a water molecule and a monodenate formate ligand building a quasi square planar surrounding. Magnetic susceptibility measurements for 1 and 2 in the temperature range 1.9-300 K show the occurrence of significant intrachain antiferromagnetic interactions between the copper(ii) ions across the guanine bridge [J = -9.6(1) (1) and -10.3(1) cm(-1) (2) with H = -J summation operator(i)S(i).S(i+1)].  相似文献   

13.
The compound [Mn(mu-ox)(4atr)2]n (1) (ox = oxalato and 4atr = 4-amine-1,2,4-triazole) has been synthesized and characterized by FT-IR spectroscopy, thermal analysis, variable-temperature magnetic measurements, and X-ray single-crystal diffraction methods. The crystal structure of compound 1 consists of one-dimensional linear chains in which trans-[Mn(4atr)2]2+ units are sequentially bridged by centrosymmetric bis-bidentate oxalato ligands. Cryomagnetic measurements show an overall antiferromagnetic behavior of the compound. Isolated chains of this polymer have been obtained by sonication of 1 in ethanol or treatment of the polymer with NaOH and morphologically characterized on highly oriented pyrolitic graphite and mica surfaces by atomic force microscopy and scanning tunneling microscopy. The procedures employed to obtain single chains of this coordination polymer open a route for future nanotechnological applications of these types of materials.  相似文献   

14.
A series of guest-binding Cu(II) coordination polymers, {[Cu(bpetha)2(acetone)2].2PF6}n (bpetha = 1,2-bis(4-pyridyl)ethane) (1), {[Cu(bpetha)2(DMF)2].2PF6}n (2), {[Cu(bpetha)(2)(MeCN)(2)].2PF6.2MeCN}n (3), {[Cu(bpetha)2(H2O)2].2PF6.3THF.2H2O}n (4), {[Cu(bpetha)2(H2O)2].2PF6.3dioxane}n (5), and {[Cu(bpetha)2(H2O)2].2PF6.2-PrOH.2H2O}n (6), have been synthesized and crystallographically characterized. Their framework stabilities and guest-exchange properties have also been investigated. All compounds form a similar framework motif, a "double chain", in which the bpetha ligands bridge Cu(II) centers to form 1-D [Cu(bpetha)2]n double chains. A variety of Lewis base guest molecules, such as H2O, acetone, DMF, MeCN, THF, dioxane, and 2-PrOH, are incorporated into the assembly of the 1-D double chains. These chains flexibly change their forms of assembly in a guest-dependent manner. Interestingly, acetone, DMF, and MeCN guests with a carbonyl or cyanide group coordinate directly to the axial sites of the Cu(II) centers; in contrast, THF, dioxane, and 2-PrOH guests with an ether or alcohol group are incorporated into the frameworks not via coordination bonds but via weak interactions (hydrogen bonds and van der Waals forces). This selectivity is probably due to steric effects at coordinated oxygen or nitrogen atoms of the guests. Crystal-to-crystal transformations triggered by guests are observed, during which guests coordinated to the Cu(II) axial sites are readily removed and replaced by other guests.  相似文献   

15.
The reaction of M(S2O6) (M = Cu(II), Ni(II), and Co(II)) with 4,4'-bipyridine-N,N'-dioxide (bpdo) results in the formation of novel 3D, 2D, and mononuclear complexes. Complex 1, {[Cu(H2O)(bpdo)2](S2O6)(H2O)}n, is a 2-D wavelike polymer with the Cu(II) ion located on a 2-fold axis and having a distorted square-pyramidal coordination sphere. With Co(II) and Ni(II), 3-D complexes, {[M(bpdo)3](S2O6)(C2H5OH)7}n [M = Co(II) (2), Ni(II) (3)], were obtained. The metal atoms are situated on centers of symmetry and have octahedral environments coordinated to six bpdo molecules. The same reaction in aqueous solution with a metal/ligand ratio of 1:1 results in the formation of mononuclear complexes, {[M(bpdo)(H2O)5](SO4)(H2O)2} [M = Co(II) (4), Ni(II) (5)], accompanied by the decomposition of the dithionate anions S2O6(2-) to sulfate anions SO4(2-).  相似文献   

16.
Zhang YZ  Wang ZM  Gao S 《Inorganic chemistry》2006,45(14):5447-5454
Three heterometallic Cr-Mn compounds, {Mn(mu-ox)0.5(H2O) [Cr(phen)(CN)4]}n.n H2O.2n CH3OH, (1), {Mn(mu-ox)0.5(H2O)[Cr(bpy)(CN)4]}n.2n H2O x n CH3OH, (2), and {Mn(mu-ox)0.5(bpy)[Cr(bpy)(CN)4]}n, (3) (ox = oxalate), containing cyanide and oxalate bridges based on building blocks [Cr(L)(CN)4]- (L = phen and 2,2'-bipyridine) have been prepared. A new approach was first employed to synthesize ox-bridged compounds via facile oxidation-hydrolysis reactions of diaminomaleonitrile. X-ray crystallography revealed that the structures of 1 and 2 are similar, where cyano-bridged corrugated ladderlike chains are further connected through bis-bidentate oxalato bridges to unique two-dimensional layered structures. Of note is that the introduction of 2,2'-bipyridine led to an interesting cluster-based chainlike compound (3) with cyano-bridged squares [Mn2Cr2] extended by ox bridges. Magnetic studies show antiferromagnetic (AF) interaction between cyano-bridged Cr(III)-Mn(II) and ox-bridged Mn(II)-Mn(II) ions, with the result that 1 and 2 exhibit AF ordering with spin-flop behaviors below 18 and 19 K, respectively.  相似文献   

17.
A set of analogous chalcogen-containing spirocycles, 2,6-dithiaspiro[3.3]heptane, 2,6-diselenaspiro[3.3]heptane, and 2-thia-6-selenaspiro[3.3]heptane [E(2)C(5)H(8), E = S (1), Se (2), and S/Se (3)], has been prepared and fully characterized by spectroscopic methods and by X-ray diffraction. The structural characterization of 2 was presented by us earlier, while the crystal structures of 1 and 3 are reported here for the first time. Molecules 1-3 are built around the central tetrahedral carbon atom and therefore are nonplanar. The E...E separation ranges from 4.690(1) A in 1 to 4.906(1) A in 2. Molecule 3 has statistically mixed positions of sulfur and selenium atoms in the solid state with all geometric characteristics being intermediate between those of 1 and 2. Compounds 2 and 3 have been tested as molecular rigid rod ligands in coordination reactions with transition metal complexes such as Cu(hfac)(2) (4), cis-Co(hfac)(2).2H(2)O (5), and cis-Ni(hfac)(2).2H(2)O (6) (hfac = hexafluoroacetylacetonate). Several coordination products built of two building blocks, M(hfac)(2) (M = Cu, Co, and Ni) and Se(2)C(5)H(8) (2), have been prepared in crystalline form and structurally characterized. The copper-based product (7) is comprised of the oligomeric units {[Cu(hfac)(2)](3).2mu(2)-Se(2)C(5)H(8)-Se,Se'} built on the axial Cu...Se interactions averaged at 2.909 A. These units are further assembled into 1D polymeric chains via intermolecular Cu...F contacts at 2.829 A. The SSeC(5)H(8) (3) ligand was also used in the reaction with Cu(hfac)(2) to afford an analogue of 7, namely {[Cu(hfac)(2)](3).2mu(2)-SSeC(5)H(8)-S,Se} (8). Complex 8 exhibits statistically mixed positions of the donor sulfur and selenium atoms to give an average axial Cu...S/Se contact at 2.892 A. In contrast to the copper complexes of composition 3:2, the stoichiometries of the isolated cobalt and nickel products are 1:1, [M(hfac)(2).Se(2)C(5)H(8)] (M = Co (9) and Ni (10)). Complexes 9 and 10 exhibit 1D polymer structures having alternating metal units cis-M(hfac)(2) and ligands 2 with intermolecuar M...Se separations of 2.6046(8) and 2.5523(16) A, respectively. In all products 7-10 the initial cis or trans geometry of M(hfac)(2) complexes is preserved and the spiro[3.3]heptane ligands act as bidentate linkers bridging transition metal centers via both donor ends. The magnetic properties of this series of new Cu(II), Co(II), and Ni(II) complexes have been tested by variable-temperature magnetic susceptibility measurements.  相似文献   

18.
本文合成了1个新的一维链状锰的配位聚合物{[Mn(HL)(phen)(H2O)2].1.5H2O}n,(H3L=2-羟基-5-羧基苯磺酸),并且进行了元素分析、红外、热重、荧光、紫外、粉末XRD及单晶X射线衍射等表征及研究。标题化合物属于单斜晶系,C2/c空间群,a=0.840 57(17)nm,b=1.757 5(4)nm,c=2.873 4(6)nm,β=92.54(3)°,V=4.240 7(16)nm 3,Z=4,R=0.027 0。每个Mn(Ⅱ)离子与邻菲咯啉配体的2个N原子、磺酸配体中的1个磺酸基O原子和羧基O原子以及2个配位水分子配位,展示出扭曲的八面体几何构型。2个相邻的Mn(Ⅱ)八面体单元通过1个磺酸基氧原子和1个羧基氧原子连接形成一维链状结构,该一维链进一步通过氢键作用构筑成三维网状结构。  相似文献   

19.
Single crystal X-ray analysis of compounds H2pmdc.2H2O (1), KHpmdc (2), and K2pmdc (3) shows that the pyrimidine-4,6-dicarboxylate (pmdc) dianion presents an almost planar geometry which confers a potential capability to act as a bis-bidentate bridging ligand, and therefore, to construct 1-D metal complexes. Based on this assumption, we have designed the first six transition metal complexes based on this ligand of formula {[M(micro-pmdc)(H2O)2].H2O}n [M(II) = Fe (4), Co (5), Ni (6), Zn (7), Cu (8)] and {[Cu(micro-pmdc)(dpa)].4H2O}n (9) (dpa = 2,2'-dipyridylamine). The crystal structure of all of these complexes has been determined by single crystal X-ray measurements, except for compound whose X-ray powder diffraction pattern reveals that it is isostructural to compounds 4-7. The bis-chelating pmdc ligand bridges sequentially octahedrally coordinated M(II) centres leading to polymeric chains. The hexacoordination of the metal centres is completed by two water molecules in compounds 4-8 and by the two endocyclic-N atoms of a terminal dpa ligand in compound . Cryomagnetic susceptibility measurements show the occurrence of antiferromagnetic intrachain interactions for compounds and (J = -2.5 (4), -5.2 (6), -32.7 (8), and -0.9 (9) cm(-1)). Model calculations and analyses of the available experimental data have been used to examine the influence of several factors on the nature and magnitude of the magnetic coupling constants in pyrimidine bridged complexes, showing that metal deviation from the pyrimidine mean plane could lead to ferromagnetic behaviour.  相似文献   

20.
Two new coordination polymers have been synthesized with Mn(2+) and Dy(3+) ions using a new bent ether-bridged tricarboxylic acid ligand, o-cpiaH(3) (5-(2-carboxy-phenoxy)-isophthalic acid). The ligand readily reacts with a Mn(2+) salt in presence of pyridine (py) under hydrothermal condition to afford a 3D coordination polymer {[Mn(9)(o-cpia)(6)(py)(3)(3H(2)O)]·H(2)O}(n) (1), that contains two types of polymeric chains. One of them is merely carboxylate bridged Mn(2+) where each metal ion shows both penta- and hexa-coordination. The other chain consists of carboxylate-bridging along with terminally bound pyridines providing both penta- and hexa-coordination to each metal ion. When o-cpiaH(3) is treated with Dy(NO(3))(3).xH(2)O under solvothermal condition, it gives rise to an unusual double layer (6,6) connected 2D coordination polymer {[Dy(o-cpia)]}(n)(2), where each metal ion is hexacoordinated. The double layer 2D sheets are stacked to each other in AA··· fashion through strong C-H···π interactions to generate an overall 3D supramolecular architecture. Both the complexes have been characterized by single crystal X-ray diffraction, IR spectroscopy, thermogravimetry and elemental analysis. Variable temperature magnetic susceptibility measurements indicate that 1 exhibits metamagnetic behavior while 2 shows weak antiferromagnetic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号