首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The conformation dependence of protein spectra recorded by electrospray ionization mass spectrometry (ESI-MS) is an interesting and useful phenomenon, whose origin is still the object of debate. Different mechanisms have been invoked in the attempt to explain the lower charge state of folded versus unfolded protein ions in ESI-MS, such as electrostatic repulsions, solvent accessibility, charge availability, and native-like interactions. In this work we try to subject to direct experimental test the hypothesis that conformation-dependent neutralization of charges with polarity opposite to the net charge of the protein ion could play a critical role in such an effect. We present results of time-of-flight nano-ESI-MS on the peptide angiotensin II, indicating that negative charges of carboxylate groups can contribute to spectra recorded in positive-ion mode when stabilized by favorable electrostatic interactions, which is the central assumption of our hypothesis. Comparison of horse and spermwhale myoglobin (Mb) shows that changing the total number of basic residues within a given three-dimensional structure shifts the charge-state distribution (CSD) of the folded protein in positive-ion mode. This result appears to be in contrast to models in which electrostatic repulsions or availability of charges in the ESI droplets represent the limiting factor for the ionization of folded protein ions in ESI-MS. At the same time, it suggests a role of acidic residues in conformational effects in positive-ion mode. Furthermore, an attempt is made to rationalize those cases in which, in contrast, the main charge state observed in ESI-MS under non-denaturing conditions deviates considerably from the net charge expected on the basis of the amino-acid composition. These cases usually correspond to proteins with quite balanced content in basic and acidic residues, suggesting that this might be a factor influencing their charging behavior in ESI-MS. Experiments on mutants of ribonuclease Sa (RNase Sa) reveal that progressively reducing the excess of acidic residues, replacing them by lysine, causes almost no shift in the spectrum of the folded protein in negative-ion mode. Analogously, variants with an excess of three or five basic residues give similar spectra in positive-ion mode. These results indicate a lower limit to the extent of ionization observable by ESI-MS (6- or 8+ in the case of RNase Sa in water). Below such limit of net charge, changes in the relative amount of ionizable side chains do not affect the qualitative features of the observed CSDs. A progressive loss of signal intensity caused by the mutations in negative-ion mode suggests that low charge states might also be counterselected, even within the m/z range theoretically accessible to the instrument.  相似文献   

2.
Changes in protein conformation are thought to alter charge state distributions observed in electrospray ionization mass spectra (ESI-MS) of proteins. In most cases, this has been demonstrated by unfolding proteins through acidification of the solution. This methodology changes the properties of the solvent so that changes in the ESI-MS charge envelopes from conformational changes are difficult to separate from the effects of changing solvent on the ionization process. A novel strategy is presented enabling comparison of ESI mass spectra of a folded and partially unfolded protein of the same amino acid sequence subjected to the same experimental protocols and conditions. The N-terminal domain of the Escherichia coli DnaB protein was cyclized by in vivo formation of an amide bond between its N- and C-termini. The properties of this stabilized protein were compared with its linear counterpart. When the linear form was unfolded by decreasing pH, a charge envelope at lower m/z appeared consistent with the presence of a population of unfolded protein. This was observed in both positive-ion and negative-ion ESI mass spectra. Under the same conditions, this low m/z envelope was not present in the ESI mass spectrum of the stable cyclized form. The effects of changing the desolvation temperature in the ionization source of the Q-TOF mass spectrometer were also investigated. Increasing the desolvation temperature had little effect on positive-ion ESI mass spectra, but in negative-ion spectra, a charge envelope at lower m/z appeared, consistent with an increase in the abundance of unfolded protein molecules.  相似文献   

3.
The electrospray ionization (ESI) charge state distribution of proteins is highly sensitive to the protein structure in solution. Unfolded conformations generally form higher charge states than tightly folded structures. The current study employs a minimalist molecular dynamics model for simulating the final stages of the ESI process in order to gain insights into the physical reasons underlying this empirical relationship. The protein is described as a string of 27 beads ("residues"), 9 of which are negatively charged and represent possible protonation sites. The unfolded state of this bead string is a random coil, whereas the native conformation adopts a compact fold. The ESI process is simulated by placing the protein inside a solvent droplet with a 2.5 nm radius consisting of 1600 Lennard-Jones particles. In addition, the droplet contains 14 protons which are modeled as highly mobile point charges. Disintegration of the droplet rapidly releases the protein into the gas phase, resulting in average charge states of 4.8+ and 7.4+ for the folded and unfolded conformation, respectively. The protonation probabilities of individual residues in the folded state reveal a characteristic pattern, with values ranging from 0.2 to 0.8. In contrast, the protonation probabilities of the unfolded protein are more uniform and cover the range from 0.8 to 1.0. The origin of these differences can be traced back to a combination of steric and electrostatic effects. Residues exhibiting a small accessible surface area are less likely to capture a proton, an effect that is exacerbated by partial electrostatic shielding from nearby positive residues. Conversely, sites that are sterically exposed are associated with electrostatic funnels that greatly increase the likelihood of protonation. Unfolding enhances the steric and electrostatic exposure of protonation sites, thereby causing the protein to capture a greater number of protons during the droplet disintegration process.  相似文献   

4.
Identifying the key factor(s) governing the overall protein charge is crucial for the interpretation of electrospray-ionization mass spectrometry data. Current hypotheses invoke different principles for folded and unfolded proteins. Here, first we investigate the gas-phase structure and energetics of several proteins of variable size and different folds. The conformer and protomer space of these proteins ions is explored exhaustively by hybrid Monte-Carlo/molecular dynamics calculations, allowing for zwitterionic states. From these calculations, the apparent gas-phase basicity of desolvated protein ions turns out to be the unifying trait dictating protein ionization by electrospray. Next, we develop a simple, general, adjustable-parameter-free model for the potential energy function of proteins. The model is capable to predict with remarkable accuracy the experimental charge of folded proteins and its well-known correlation with the square root of protein mass.  相似文献   

5.
This work was aimed at probing the influence of solvent surface tension on protein ionization by electrospray. In particular, we were interested in testing the previously suggested hypothesis that the charge-state distributions (CSDs) of proteins in electrospray ionization mass spectrometry (ESI-MS) are controlled by the surface tension of the least volatile solvent component. In the attempt to minimize uncontrolled conformational effects, we used acid-sensitive proteins (cytochrome c and myoglobin) at low pH or highly stable proteins (ubiquitin and lysozyme) in the presence of low concentrations of organic solvents. A first set of experiments compared the effect of 1- and 2-propanol. These two alcohols have similar chemico-physical properties but values of vapor pressure below and above that of water, respectively. Both compounds have much lower surface tension than water. The solvents employed allowed testing of the influence of surface tension on protein spectra obtained from similarly denaturing solutions. The compared solvent conditions gave rise to very similar spectra for each tested protein. We then investigated the effect of the addition of dimethyl sulfoxide to acid-unfolded proteins. We observed enhanced ionization in the presence of acetic or formic acid, consistent with the previously described supercharging effect, but almost no shift of the CSD in the presence of HCl. Finally, we analyzed thermally denatured cytochrome c, to obtain reference spectra of the unfolded protein in high-surface-tension solutions. Also in this case, the CSD of the unfolded protein was shifted towards lower m/z values relative to low-surface-tension systems. In contrast to the other results reported here, this effect is consistent with an influence of solvent surface tension on CSD. The magnitude of the effect, however, is much smaller than predicted by the Rayleigh equation. The results presented here are not easy to reconcile with the hypothesis that the maximum charge state exhibited by proteins in ESI-MS reflects the Rayleigh-limit charge of the precursor droplet. The data are discussed with reference to models for the mechanism of electrospray ionization.  相似文献   

6.
Electrospray ionization mass spectrometry (ESI-MS) is a valuable tool in structural biology for investigating globular proteins and their biomolecular interactions. During the electrospray ionization process, proteins become desolvated and multiply charged, which may influence their structure. Reducing the net charge obtained during the electrospray process may be relevant for studying globular proteins. In this report we demonstrate the effect of a series of inorganic and organic gas-phase bases on the number of charges that proteins and protein complexes attain. Solution additives with very strong gas-phase basicities (GB) were identified among the so-called "proton sponges". The gas-phase proton affinities (PA) of the compounds that were added to the aqueous protein solutions ranged from 700 to 1050 kJ mol(-1). Circular dichroism studies showed that in these solutions the proteins retain their globular structures. The size of the proteins investigated ranged from the 14.3 kDa lysozyme up to the 800 kDa tetradecameric chaperone complex GroEL. Decharging of the proteins in the electrospray process by up to 60 % could be achieved by adding the most basic compounds rather than the more commonly used ammonium acetate additive. This decharging process probably results from proton competition events between the multiply protonated protein ions and the basic additives just prior to the final desolvation. We hypothesize that such globular protein species, which attain relatively few charges during the ionization event, obtain a gas-phase structure that more closely resembles their solution-phase structure. Thus, these basic additives can be useful in the study of the biologically relevant properties of globular proteins by using mass spectrometry.  相似文献   

7.
Electrospray mass spectrometric studies in native folded forms of several proteins in aqueous solution have been performed in the positive and negative ion modes. The mass spectra of the proteins show peaks corresponding to multiple charge states of the gaseous protein ions. The results have been analyzed using the known crystal structures of these proteins. Crystal structure analysis shows that among the surface exposed residues some are involved in hydrogen-bonding or salt-bridge interactions while some are free. The maximum positive charge state of the gaseous protein ions was directly related to the number of free surface exposed basic groups whereas the maximum negative charge state was related to the number of free surface exposed acidic groups of the proteins. The surface exposed basic groups, which are involved in hydrogen bonding, have lower propensity to contribute to the positive charge of the protein. Similarly, the surface exposed acidic groups involved in salt bridges have lower propensity to contribute to the negative charge of the protein. Analysis of the crystal structure to determine the maximum charge state of protein in the electrospray mass spectrum was also used to interpret the reported mass spectra of several proteins. The results show that both the positive and the negative ion mass spectra of the proteins could be interpreted by simple consideration of the crystal structure of the folded proteins. Moreover, unfolding of the protein was shown to increase the positive charge-state because of the availability of larger number of free basic groups at the surface of the unfolded protein.  相似文献   

8.
Electrospray ionization (ESI) mass spectrometry (MS) in both the positive and negative ion mode has been used to study protein unfolding transitions of lysozyme, cytochrome c (cyt c), and ubiquitin in solution. As expected, ESI of unfolded lysozyme leads to the formation of substantially higher charge states than the tightly folded protein in both modes of operation. Surprisingly, the acid-induced unfolding of cyt c as well as the acid and the base-induced unfolding of ubiquitin show different behavior: In these three cases protein unfolding only leads to marginal changes in the negative ion charge state distributions, whereas in the positive ion mode pronounced shifts to higher charge states are observed. This shows that ESI MS in the negative ion mode as a method for probing conformational changes of proteins in solution should be treated with caution. The data presented in this work provide further evidence that the conformation of a protein in solution not its charge state is the predominant factor for determining the ESI charge state distribution in the positive ion mode. Furthermore, these data support the hypothesis of a recent study (Konermann and Douglas, Biochemistry 1997, 36, 12296–12302) which suggested that ESI in the positive ion mode is not sensitive to changes in the secondary structure of proteins but only to changes in the tertiary structure.  相似文献   

9.
Electrospray ionization mass spectrometry (ESI-MS) can be used to monitor conformational changes of proteins in solution based on the charge state distribution (CSD) of the corresponding gas-phase ions, although relatively few studies of acidic proteins have been reported. Here, we have compared the CSD and solution structure of recombinant Vibrio harveyi acyl carrier protein (rACP), a small acidic protein whose secondary and tertiary structure can be manipulated by pH, fatty acylation, and site-directed mutagenesis. Circular dichroism and intrinsic fluorescence demonstrated that apo-rACP adopts a folded helical conformation in aqueous solution below pH 6 or in 50% acetonitrile/0.1% formic acid, but is unfolded at neutral and basic pH values. A rACP mutant, in which seven conserved acidic residues were replaced with their corresponding neutral amides, was folded over the entire pH range of 5 to 9. However, under the same solvent conditions, both wild type and mutant ACPs exhibited similar CSDs (6(+)-9(+) species) at all pH values. Covalent attachment of myristic acid to the phosphopantetheine prosthetic group of rACP, which is known to stabilize a folded conformation in solution, also had little influence on its CSD in either positive or negative ion modes. Overall, our results are consistent with ACP as a "natively unfolded" protein in a dynamic conformational equilibrium, which allows access to (de)protonation events during the electrospray process.  相似文献   

10.
A technique combining ion mobility spectrometry-mass spectrometry (IMS-MS) and supercharging electrospray ionization (ESI) has been demonstrated to differentiate protein chemical topology effectively. Incorporating as many charges as possible into proteins via supercharging ESI allows the protein chains to be largely unfolded and stretched, revealing their hidden chemical topology. Different chemical topologies result in differing geometrical sizes of the unfolded proteins due to constraints in torsional rotations in cyclic domains. By introducing new topological indices, such as the chain-length-normalized collision cross-section (CCS) and the maximum charge state (zM) in the extensively unfolded state, we were able to successfully differentiate various protein chemical topologies, including linear chains, ring-containing topologies (lasso, tadpole, multicyclics, etc.), and mechanically interlocked rings, like catenanes.  相似文献   

11.
This work uses electrospray ionization mass spectrometry (ESI-MS) in conjunction with hydrogen/deuterium exchange (HDX) and optical spectroscopy for characterizing the solution-phase properties of cytochrome c (cyt c) after heat exposure. Previous work demonstrated that heating results in irreversible denaturation for a subpopulation of proteins in the sample. However, that study did not investigate the physical reasons underlying this interesting effect. Here we report that the formation of oxidative modifications at elevated temperature plays a key role for the observed behavior. Tryptic digestion followed by tandem mass spectrometry is used to identify individual oxidation sites. Trp59 and Met80 are among the modified amino acids. In native cyt c both of these residues are buried deep within the protein structure, such that covalent modifications would be expected to be particularly disruptive. ESI-MS analysis after heat exposure results in a bimodal charge-state distribution. Oxidized protein appears predominantly in charge states around 11+, whereas a considerably lower degree of oxidation is observed for the 7+ and 8+ peaks. This finding confirms that different oxidation levels are associated with different solution-phase conformations. HDX measurements for different charge states are complicated by peak distortions arising from oxygen adduction. Nonetheless, comparison with simulated peak shapes clearly shows that the HDX properties are different for high- and low-charge states, confirming that interconversion between unfolded and folded conformers is blocked in solution. In addition to oxidation, partial aggregation upon heat exposure likely contributes to the formation of irreversibly denatured protein.  相似文献   

12.
Although multiple charging in electrospray ionization (ESI) is essential to protein mass spectrometry, the underlying mechanism of multiple charging has not been explicated. Here, we present a new theory to describe ESI of native-state proteins and predict the number of excess charges on proteins in ESI. The theory proposes that proteins are ionized as charged residues in ESI, as they retain residual excess charges after solvent evaporation and do not desorb from charged ESI droplets. However, their charge state is not determined by the Rayleigh limit of a droplet of similar size to the protein; rather, their final charge state is determined by the electric field-induced emission of small charged solute ions and clusters from protein-containing ESI droplets. This theory predicts that the number of charges on a protein in ESI should be directly proportional to the square of the gas-phase protein diameter and to E*, the critical electric field strength at which ion emission from droplets occurs. This critical field strength is determined by the properties of the excess charge carriers (i.e., the solute) in droplets. Charge-state measurements of native-state proteins with molecular masses in the 5-76 kDa range in ammonium acetate and triethylammonium bicarbonate are in excellent agreement with theoretical predictions and strongly support the mechanism of protein ESI proposed here.  相似文献   

13.
The conformations of ubiquitin ions before and after being exposed to proton transfer reagents have been studied by using ion mobility/mass spectrometry techniques. Ions were produced by electrospray ionization and exposed to acetone, acetophenone, n-butylamine, and 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene. Under the conditions employed, the +4 to +13 charge states were formed and a variety of conformations, which we have characterized as compact, partially folded, and elongated, have been observed. The low charge state ions have cross sections that are similar to those calculated for the crystal conformation. High charge states favor unfolded conformations. The ion mobility distributions recorded after ions have been exposed to each base show that the lowest charge state that is formed during proton-transfer reactions favors a compact conformation. More open conformations are observed for the higher charge states that remain after reaction. The results show that for a given charge state, the apparent gas-phase acidities of the different conformations are ordered as compact < partially folded < elongated.  相似文献   

14.
First results are reported on the application of ECD in analysis of 2+ and 3+ ions of stereoisomers of Trp-cage (NLYIQWLKDGGPSSGRPPPS), the smallest and fastest-folding protein, which exhibits a tightly folded tertiary structure in solution. The chiral recognition based on the ratios of the abundances of z(18) and z(19) fragments in ECD of 2+ ions was excellent even for a single amino acid (Tyr) D-substitution (R(chiral) = 8.6). The chiral effect decreased with an increase of temperature at the electrospray ion source, as well as at a higher degree of ionization, 3+ ions (R(chiral) = 1.5). A general approach is suggested for charge localization in n+ ions by analysis of ECD mass spectra of (n + 1)+ ions. Application of this approach to 3+ Trp-cage ions revealed the protonation probability order in 2+ ions: Arg(16) > Gln(5) > approximately N-terminus. The ECD results for native form of the 2+ ions favor the preservation of the solution-phase tertiary structure, and chiral recognition through the interaction between the charges and the neutral bond network. Conversely, ECD of 3+ ions supports the dominance of ionic hydrogen bonding which determines a different gas-phase structure than found in solution. Vibrational activation of 2+ ions indicated greater stability of the native form, but the fragmentation patterns did not provide stereoisomer differentiation, thus underlying the special position of ECD among other MS/MS fragmentation techniques. Further ECD studies should yield more structural information as well as quantitative single-amino acid D/L content measurements in proteins.  相似文献   

15.
Dissociation of gas-phase protonated protein dimers into their constituent monomers can result in either symmetric or asymmetric charge partitioning. Dissociation of alpha-lactalbumin homodimers with 15+ charges results in a symmetric, but broad, distribution of protein monomers with charge states centered around 8+/7+. In contrast, dissociation of the 15+ heterodimer consisting of one molecule in the oxidized form and one in the reduced form results in highly asymmetric charge partitioning in which the reduced species carries away predominantly 11+ charges, and the oxidized molecule carries away 4+ charges. This result cannot be adequately explained by differential charging occurring either in solution or in the electrospray process, but appears to be best explained by the reduced species unfolding upon activation in the gas phase with subsequent separation and proton transfer to the unfolding species in the dissociation complex to minimize Coulomb repulsion. For dimers of cytochrome c formed directly from solution, the 17+ charge state undergoes symmetric charge partitioning whereas dissociation of the 13+ is asymmetric. Reduction of the charge state of dimers with 17+ charges to 13+ via gas-phase proton transfer and subsequent dissociation of the mass selected 13+ ions results in a symmetric charge partitioning. This result clearly shows that the structure of the dimer ions with 13+ charges depends on the method of ion formation and that the structural difference is responsible for the symmetric versus asymmetric charge partitioning observed. This indicates that the asymmetry observed when these ions are formed directly from solution must come about due either to differences in the monomer conformations in the dimer that exist in solution or that occur during the electrospray ionization process. These results provide additional evidence for the origin of charge asymmetry that occurs in the dissociation of multiply charged protein complexes and indicate that some solution-phase information can be obtained from these gas-phase dissociation experiments.  相似文献   

16.
The molecular properties and stability of a laccase from the white-rot fungus Trametes hirsuta (ThL) were studied to exploit the unique capability of electrospray ionization mass spectrometry (ESI-MS) to monitor conformational and molecular-based heterogeneities and metal ion binding simultaneously. Acid and organic solvents were applied as denaturing agents. In aqueous acidic solution, ThL existed in two major forms, distinguished by their mass difference; in addition to these, two other forms were detected. This molecular heterogeneity was due to the variable glycan content of ThL. Additionally, copper-depleted forms of laccase were observed in mass spectra measured from aqueous acidic solution. A small amount of organic solvent (acetonitrile, CH(3)CN) increased the loss of one Cu atom from folded states and led to unfolding. In the unfolded state, ThL was depleted of all four copper atoms, and the charge state distribution was shifted to lower mass-to-charge region. Thus, denaturation took place in two stages: first, the loss of one Cu resulting in an inactive form; second, complete denaturation with the loss of the three remaining Cu atoms. After all coppers were lost, ThL was unfolded, as was clearly seen in the increased number of charge states in the mass spectra. Different stabilities of the glycoforms were observed in the denaturation triggered in acid and organic solvents.  相似文献   

17.
We have recorded the first conformer-selective photoelectron spectra of a protein polyanion in the gas-phase. Bovine cytochrome c protein was studied in 8 different negative charge states ranging from 5- to 12-. Electron binding energies were extracted for all charge states and used as a direct probe of intramolecular Coulomb repulsion. Comparison of experimental results with simulations shows that the experimental outcome can be reproduced with a simple electrostatic model. Energetics are consistent with a structural transition from a folded to an unfolded conformational state of the protein as the number of charges increases. Furthermore, the additional ion-mobility data show that the onset of unfolding can be assigned to charge state 6- where three conformers can be distinguished.  相似文献   

18.
Green fluorescent protein (GFP) was ionized by native electrospray ionization and trapped for many seconds in high vacuum, allowing fluorescence emission to be measured as a probe of its biological function, to answer the question whether GFP exists in the native form in the gas phase or not. Although a narrow charge‐state distribution, a collision cross‐section very close to that expected for correctly folded GFP, and a large stability against dissociation all support a near‐native gas‐phase structure, no fluorescence emission was observed. The loss of the native form is attributed to the absence of residual water in the gas phase, which normally stabilizes the para‐hydroxybenzylidene imidazolone chromophore of GFP.  相似文献   

19.
This paper reports notable observations regarding the ion charge states of thermally stable cytochrome c, generated using an alternating current (AC) electrospray ionization (ESI) device. An AC ESI sprayer entrains low-mobility ions to accumulate at the meniscus cone tip prior to the ejection of detached aerosols to produce analyte ions. Therefore, as the solvent acidity varies, protein ions entrained in the AC cone tip are found to change conformation less significantly compared with those in the direct current (DC) cone. We acquired the AC ESI mass spectra of cytochrome c at pH range from 2 to 4. Unlike the DC ESI mass spectra showing clear conformation changes due to denaturing, the AC spectra indicated that only partial denaturing occurs even at extremely acidic pH 2. More native cytochrome c in lower charge states therefore remained. Moreover, with a solvent mixture of aqueous buffer and acetonitrile (70:30), partially denatured cytochrome c was still preserved at pH 2 by using AC ESI. Completely denatured proteins are observed at pH 2 by using DC ESI.  相似文献   

20.
Recently, we reported on a phenomenon in which multiply charged protein cations produced by electrospray ionization could be reduced to lower and narrower charge state distributions when admixed with reducing reagents 1,4-benzoquinone or quinhydrone. Circular dichroism spectra of the proteins indicated that secondary and tertiary structural changes upon addition of these reducing reagents were negligible, thus eliminating conformational effects as playing a role in the charge reduction mechanism. Furthermore, the extent of charge state reduction did not correspond with gas-phase basicities of the redox reagents, suggesting that solution-phase, and not gas-phase, behavior dominates the observed charge state reduction. The relatively low resolution of the triple quadrupole employed did not make it possible to distinguish isotopic distributions of the multiply charged cations in order to determine whether the observed phenomenon was the result of proton-transfer reactions between the multiply charged cations and the reducing reagent or because of electron transfer from the reducing reagent to the protein cations. Here, high-resolution ESI-Fourier transform ion cyclotron resonance mass spectrometry of several peptide amides in the presence of a redox reagent show isotopic distributions that are consistent only with the proton-transfer mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号