首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 120 毫秒
1.
In order to identify the cellular mechanisms leading to the biocompatibility of hydroxyapatite implants, we studied the interaction of human bone marrow derived stromal (mesenchymal) stem cells (hMSCs) with fibronectin-coated gold (Au) and hydroxyapatite (HA) surfaces. The adsorption of fibronectin was monitored by Quartz Crystal Microbalance with Dissipation (QCM-D) at two different concentrations, 20 μg/ml and 200 μg/ml, and the fibronectin adsorption experiments were complemented with antibody measurements. The QCM-D results show that the surface mass uptake is largest on the Au surfaces, while the number of polyclonal and monoclonal antibodies directed against the cell-binding domain (CB-domain) on the fibronectin (Fn) is significantly larger on the (HA) surfaces. Moreover, a higher number of antibodies bound to the fibronectin coatings formed from the highest bulk fibronection concentration. In subsequent cell studies with hMSC's we studied the cell spreading, cytoskeletal organization and cell morphology on the respective surfaces. When the cells were adsorbed on the uncoated substrates, a diffuse cell actin cytoskeleton was revealed, and the cells had a highly elongated shape. On the fibronectin coated surfaces the cells adapted to a more polygonal shape with a well-defined actin cytoskeleton, while a larger cell area and roundness values were observed for cells cultured on the coated surfaces. Among the coated surfaces a slightly larger cell area and roundness values was observed on HA as compared to Au. Moreover, the results revealed that the morphology of cells cultured on fibronectin coated HA surfaces were less irregular. In summary we find that fibronectin adsorbs in a more activated state on the HA surfaces, resulting in a slightly different cellular response as compared to the fibronectin coated Au surfaces.  相似文献   

2.
Fibronectin and collagens are major constituents of the cell matrix of fibroblasts. Fibronectin is a 220,000 dalton glycoprotein that mediates a variety of adhesive functions of cells examined in vitro. Fibronectin is secreted in a soluble form and interacts with collagen to form extracellular filaments. Fibronectin and procollagen type I were localized using the peroxidase anti-peroxidase method. Under standard culture conditions, fibronectin and procollagen were localized to non-periodic 10 nm extracellular fibrils, the cell membrane and plasma membrane vesicles. Ascorbate treatment of cells leads to a new larger fibril with a diameter of approximately 40 nm. Antibodies to fibronectin and procollagen I react to these native collagen fibrils with an axial periodicity of approximately 70 nm. Fibronectin is clearly associated with native collagen fibrils produced by ascorbate treated cells and there is an asymetric distribution or segregation of fibronectin on these collagen fibrils with a 70 nm axial repeat.  相似文献   

3.
The salivary protein statherin is known to adsorb selectively onto hydroxyapatite (HA), which constitutes the main mineral of the tooth enamel. This adsorption is believed to be crucial for its function as an inhibitor of primary (spontaneous) and secondary (crystal growth) precipitation of calcium phosphate salts present in saliva. A fragment corresponding to the first 21 N-terminus amino acids of statherin (StN21) was previously found to reduce the rate of demineralization of HA. Therefore, the interfacial properties of this peptide and statherin onto silica, hydrophobized silica and HA discs was studied by in situ ellipsometry. Their reversibility induced by dilution and elutability induced by buffer and sodium dodecyl sulfate (SDS) was also determined. The results revealed that statherin adsorbed at a greater extent onto the HA as compared to StN21, suggesting that the hydrogen bonding between the uncharged polar residues at the C-terminal region of statherin and HA contributes to its adsorption. However, on both silica surfaces the peptide adsorption appeared to proceed in a similar way. Onto the hydrophobized silica the adsorption of both peptides was suggested to occur either via multilayer formation or adsorption of aggregates from solution, while onto the hydrophilic silica adsorption of peptide aggregates from solution was the suggested mechanism. Further, both peptides were observed to be strongly adsorbed onto HA, even after SDS treatment, in comparison to the layers adsorbed onto hydrophobized silica. Both peptide layers were found to be weakly adsorbed onto the hydrophilic silica surface as they were totally removed by buffer dilution.  相似文献   

4.
For a better understanding of adsorption of the rare earth elements (REEs) onto minerals and its controlling factors, adsorption experiments were performed at pH range of from 3 to 10 with kaolin (1500 mg/L) in a matrix of various concentration of NaNO3 and about 20 μg/L of the total REEs as well as various amounts of humic acid (HA). The adsorption of HA onto the kaolin occurred over a wide pH range and decreases with increasing pH and with increasing HA concentration. The results show that humic acid has ability to either increase or decrease the adsorption of the REEs onto kaolin, depending on pH, which may be related to their speciation distribution, interaction of HA with the mineral surface. Furthermore, the light REEs are more adsorbed onto kaolin in presence of higher concentration of HA, presumably because the increase in HA concentration in the solution enhance stronger complexing of HA with heavy REEs as compare to light REEs. The ionic strength has strong effect on the adsorption of HA and REEs onto the kaolin but little on the REEs fractionation. The results presented here indicate that mineral/water adsorption may generate the enrichment of the dissolved heavy REEs in the presence of a significant amount of humic acid, which is consistent with the fractionation of REEs in the most of natural waters.  相似文献   

5.
In this study, adsorption behavior and mechanism of Cu(II) onto carbonate-substituted hydroxyapatite (CHAP) in the absence and presence of humic acid (HA) were studied in batch experiments. The results showed that carbonate incorporation in HAP could significantly enhance the adsorption of Cu(II). In ternary systems, the presence of HA led to an increase in Cu(II) adsorption, dependent on HA concentration. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process of Cu(II) onto CHAP and equilibrium data were best described by Sips models. The order of addition sequences of substrates was found to have a noticeable effect on Cu(II) adsorption onto CHAP. The general trend with respect to Cu(II) adsorption being: (CHAP–Cu)–HA?>?(CHAP–HA)–Cu?>?(Cu–HA)–CHAP. The present findings were important for estimating and optimizing the removal of Cu(II) ions by using CHA as a potential adsorbent.  相似文献   

6.
It is well-known that protein-modified implant surfaces such as TiO(2) show a higher bioconductivity. Fibronectin is a glycoprotein from the extracellular matrix (ECM) with a major role in cell adhesion. It can be applied on titanium oxide surfaces to accelerate implant integration. Not only the surface concentration but also the presentation of the protein plays an important role for the cellular response. We were able to show that TiO(X) surfaces modified with biotinylated fibronectin adsorbed on a streptavidin-silane self-assembly multilayer system are more effective regarding osteoblast adhesion than surfaces modified with nonspecifically bound fibronectin. The adsorption and conformation behavior of biotinylated and nonbiotinylated (native) fibronectin was studied by surface plasmon resonance (SPR) spectroscopy and atomic force microscopy (AFM). Imaging of the protein modification revealed that fibronectin adopts different conformations on nonmodified compared to streptavidin-modified TiO(X) surfaces. This conformational change of biotinylated fibronectin on the streptavidin monolayer delivers a fibronectin structure similar to the conformation inside the ECM and therefore explains the higher cell affinity for these surfaces.  相似文献   

7.
Fibronectin displacement at polymer surfaces   总被引:1,自引:0,他引:1  
The interactions of fibronectin with thin polymer films are studied in displacement experiments using human serum albumin. Fibronectin adsorption and exchange on two different maleic anhydride copolymer surfaces differing in hydrophobicity and surface charge density have been analyzed by quartz crystal microbalance and laser scanning microscopy with respect to adsorbed amounts, viscoelastic properties, and conformation. Fibronectin is concluded to become attached onto hydrophilic surfaces as a "softer", less rigid protein layer, in contrast to the more rigid, densely packed layer on hydrophobic surfaces. As a result, the fibronectin conformation is more distorted on the hydrophobic substrates together with remarkably different displacement characteristics in dependence on the adsorbed fibronectin surface concentration and the displacing albumin solution concentration. While the displacement kinetic remains constant for the strongly interacting surface, an acceleration in fibronectin exchange is observed for the weakly interacting surface with increasing fibronectin coverage. For displaced amounts, no change is determined for the hydrophobic substrate, in contrast to the hydrophilic substrate with a decrease of fibronectin exchange with decreasing coverage leading finally to a constant nondisplaceable amount of adsorbed proteins. Furthermore, the variation of the albumin exchange concentration reveals a stronger dependence of the kinetic for the weakly interacting substrate with higher rates at higher albumin concentrations.  相似文献   

8.
The dynamic adsorption of human serum albumin (HSA) and plasma fibronectin (Fn) onto hydrophobic poly(hydroxymethylsiloxane) (PHMS) and the structures of adsorbed protein layers from single and binary protein solutions were studied. Spectroscopic ellipsometry (SE) and quartz crystal microbalance with dissipation monitoring (QCM-D) together with atomic force microscopy (AFM) were used to measure the effective mass, thickness, viscoelastic properties, and morphology of the adsorbed protein films. Adsorbed HSA formed a rigid, tightly bound monolayer of deformed protein, and Fn adsorption yielded a thick, very viscoelastic layer that was firmly bound to the substrate. The mixed protein layers obtained from the coadsorption of binary equimolecular HSA-Fn solutions were found to be almost exclusively dominated by Fn molecules. Further sequential adsorption experiments showed little evidence of HSA adsorbed onto the predeposited Fn layer (denoted as Fn ? HSA), and Fn was not adsorbed onto predeposited HSA (HSA ? Fn). The conformational arrangement of the adsorbed Fn was analyzed in terms of the relative availability of two Fn domains. In particular, (4)F(1)·(5)F(1) binding domains in the Hep I fragment, close to the amino terminal of Fn, were targeted using a polyclonal antifibronectin antibody (anti-Fn), and the RGD sequence in the 10th segment, in the central region of the molecule, was tested by cell culture experiments. The results suggested that coadsorption with HSA induced the Fn switch from an open conformation, with the amino terminal subunit oriented toward the solution, to a close conformation, with the Fn central region oriented toward the solution.  相似文献   

9.
Fibronectin (FN), a large glycoprotein found in body fluids and in the extracellular matrix, plays a key role in numerous cellular behaviours. We investigate FN adsorption onto hydrophilic bare silica and hydrophobic polystyrene (PS) surfaces using Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) in aqueous medium. Adsorption kinetics using different bulk concentrations of FN were followed for 2h and the surface density of adsorbed FN and its time-dependent conformational changes were determined. When adsorption occurs onto the hydrophilic surface, FN molecules keep their native conformation independent of the adsorption conditions, but the amount of adsorbed FN increases with time and the bulk concentration. Although the protein surface density is the same on the hydrophobic PS surface, this has a strong impact on the average conformation of the adsorbed FN layer. Indeed, interfacial hydration changes induced by adsorption onto the hydrophobic surface lead to a decrease in unhydrated beta-sheet content and cause an increase in hydrated beta-strand and hydrated random domain content of adsorbed FN. This conformational change is mainly dependent on the bulk concentration. Indeed, at low bulk concentrations, the secondary structures of adsorbed FN molecules undergo strong unfolding, allowing an extended and hydrated conformation of the protein. At high bulk concentrations, the molecular packing reduces the unfolding of the stereoregular structures of the FN molecules, preventing stronger spreading of the protein.  相似文献   

10.
The self-assembly of nonionic surfactants in bulk solution and on hydrophobic surfaces is driven by the same intermolecular interactions, yet their relationship is not clear. While there are abundant experimental and theoretical studies for self-assembly in bulk solution and at the air-water interface, there are only few systematic studies for hydrophobic solid-water interfaces. In this work, we have used optical reflectometry to measure adsorption isotherms of seven different nonionic alkyl polyethoxylate surfactants (CH3(CH2)I-1(OCH2CH2)JOH, referred to as CIEJ surfactants, with I = 10-14 and J = 3-8), on hydrophobic, chemically homogeneous self-assembled monolayers of octadecyltrichlorosilane. Systematic changes in the adsorption isotherms are observed for variations in the surfactant molecular structure. The maximum surface excess concentration decreases (and minimum area/molecule increases) with the square root of the number of ethoxylate units in the surfactant (J). The adsorption isotherms of all surfactants collapse onto the same curve when the bulk and surface excess concentrations are rescaled by the bulk critical aggregation concentration (CAC) and the maximum surface excess concentration. In an accompanying paper we compare these experimental results with the predictions of a unified model developed for self-assembly of nonionic surfactants in bulk solution and on interfaces.  相似文献   

11.
A quartz crystal microbalance with dissipation (QCM-D) technique was employed to detecting the protein adsorption and subsequent osteoblast-like cell adhesion to hydroxyapatite (HAp) nanocrystals. The interfacial phenomena with the preadsorption of three proteins (albumin (BSA), fibronectin (Fn), and collagen (Col)), the subsequent adsorption of fetal bovine serum (FBS), and the adhesion of the cells were investigated. The QCM-D measured the frequency shift (Δf) and dissipation energy shift (ΔD), and the viscoelastic properties of the adlayers were evaluated using ΔD-Δf plot and Voigt-based viscoelastic model. The Col adsorption significantly showed higher Δf, ΔD, elasticity, and viscosity values as compared to the BSA and Fn adsorption, and the subsequent FBS adsorption depended on the preadsorbed proteins. The ΔD-Δf plot of the cell adhesion also showed a different behavior depending on the surfaces, and the Fn- and Col-modified surfaces showed the rapid mass and ΔD changes by forming the viscous interfacial layers with cell adhesion, indicating that the processes were affected by the cellular reaction through the extracellular matrix (ECM) proteins. The confocal laser scanning microscope images of adherent cells showed a different morphology and pseudopod on the surfaces. The cells adhered to the surfaces modified with the Fn and Col had significantly uniaxially expanded shapes and fibrous pseudopods, and those modified with the BSA had a round shape. Therefore, the different cell-protein interactions would cause the arrangement of the ECM and the cytoskeleton changes at the interfaces, and these phenomena were successfully detected by the QCM-D and Voigt-based model.  相似文献   

12.
Adsorbed protein layers are often away from equilibrium and thus exhibit history dependent structures. We use the kinetics of monoclonal antibody binding, as measured using optical waveguide lightmode spectroscopy (OWLS), to investigate the structure of adsorbed fibronectin (Fn) layers formed under different kinetic paths. For all of the layers investigated, we find no difference between the apparent adsorption rate constants of (i) monoclonal antibodies specific to Fn's cell binding site (alpha-Fn) and (ii) monoclonal antibodies specific to cytochrome c (alpha-CC, as a control), indicating initial adsorption of antibodies to be non-specific. For certain layers, the saturation density and the initial projected area per antibody differ significantly between alpha-Fn and alpha-CC, suggesting specific binding to follow the initial non-specific attachment. The fraction of antibodies binding specifically to the Fn layer, and the number of Fn binding sites per specific binding event, are estimated in terms of the difference in initial projected areas between alpha-Fn and alpha-CC. For a Fn layer formed at a bulk concentration of 2 microg/mL, we find a decrease in specific binding with an increase in Fn layer formation time, suggesting post-adsorption structural changes of a lower density adsorbed layer diminish binding site availability. Conversely, for a Fn layer formed at a bulk concentration of 40 microg/mL, we find an increase in specific binding with an increase in the aging time of the Fn layer, implying post-adsorption structural changes reveal binding sites for a higher density adsorbed layer.  相似文献   

13.
Conformational analyses of PRP1, a proline-rich acidic salivary protein and major component of the acquired enamel pellicle, have been carried out in solution and upon binding to two enamel prototypes, hydroxyapatite (HA) and carbonated hydroxyapatite (CHA), using Fourier transform infrared spectroscopy (FTIR) in attenuated total reflection (ATR) mode. We have shown for the first time that, in solution, large portions of PRP1 adopt the hydrated polyproline type II (PPII) helical structure in addition to the random coil structure, with the maximum absorbance of the amide I band around 1620 cm(-1). Upon binding to HA or CHA, the protein undergoes significant conformational changes, loosing a considerable portion of hydrated PPII and random coil domains with a shift in the maximum absorbance to 1666 cm(-1), indicating that a large fraction of the protein is composed of beta turns. A small fraction of PPII in a calcium-bound or anhydrous form (approximately 1642 cm(-1)) was also observed in the HA- and CHA-bound proteins, which could play a role in protein-mineral interactions. The conformational changes in PRP1 adsorbed on CHA and HA were similar in nature; however, these changes were greater in the protein bound to HA. Interestingly, these results are in agreement with protein adsorption data that show that less protein is adsorbed onto CHA than onto HA. Our results demonstrate that binding to apatitic mineral surfaces leads to major conformational changes in PRP1, which might reflect the expulsion of water and the formation of protein-mineral and/or protein-protein interactions in the adsorbed layer.  相似文献   

14.
Dye and heavy metal contaminants are mainly aquatic pollutants. Although many materials and methods have been developed to remove these pollutants from water, effective and cheap materials and methods are still challenging. In this study, highly porous hydroxyapatite/graphene oxide/chitosan beads (HGC) were prepared by a facile one-step method and investigated as efficient adsorbents. The prepared beads showed a high porosity and low bulk density. SEM images indicated that the hydroxyapatite (HA) nanoparticles and graphene oxide (GO) nanosheets were well dispersed on the CTS matrix. FT-IR spectra confirmed good incorporation of the three components. The adsorption behavior of the obtained beads to methylene blue (MB) and copper ions was investigated, including the effect of the contact time, pH medium, dye/metal ion initial concentration, and recycle ability. The HGC beads showed rapid adsorption, high capacity, and easy separation and reused due to the porous characteristics of GO sheets and HA nanoparticles as well as the rich negative charges of the chitosan (CTS) matrix. The maximum sorption capacities of the HGC beads were 99.00 and 256.41 mg g−1 for MB and copper ions removal, respectively.  相似文献   

15.
Polymer adsorption onto an artificial saliva (AS) layer is investigated using quartz-crystal microbalance with dissipation (QCM-D) and chitosan as the model polymer. QCM-D is utilized in an innovative manner to monitor in situ adsorption of chitosan (CH) onto a hydroxyapatite (HA) coated crystal and to examine the ability of the adsorbed layer to "protect" the HA upon sequential exposure to acidic solutions. After deposition of a thin AS layer (16nm), the total thickness on the HA substrate increases to 37nm upon exposure to CH at pH 5.5 for 10min. Correspondingly, the surface charge changes from negative (i.e., AS) to positive, consistent with the adsorption the polycationic CH onto or into the AS layer. Upon exposure to an oxidizing agent, the chitosan cross-links and collapses as noted by a decrease in thickness to 10nm and an increase in the shear modulus by an order of magnitude. Atomic force microscopy (AFM) is used to determine the surface morphology and RMS roughness of the coated and HA surfaces after citric acid challenges. Both physisorbed and cross-linked chitosan are demonstrated to limit and prevent the erosion of HA, respectively.  相似文献   

16.
In this work, fibronectin purification from human plasma with the gelatin-immobilised poly(hydroxyethyl methacrylate) (PHEMA) cryogel has been evaluated. The PHEMA cryogel was prepared by cryo-polymerisation which proceeds in an aqueous solution of monomer frozen inside a plastic syringe. The PHEMA cryogel contained interconnected macrochannels of 10–200 μm in diameter. Gelatin molecules were covalently immobilised onto the PHEMA cryogel via carbodiimide activation. The gelatin-immobilised PHEMA cryogel was used to purify fibronectin from human plasma. Fibronectin adsorption from human plasma on the PHEMA cryogel was 0.30 mg/ml, while much higher adsorption values, up to 38 mg/ml, was obtained with the gelatin-immobilised PHEMA cryogel. The fibronectin adsorption capacity of the gelatin-immobilised PHEMA cryogel did not change with an increase in the flow rate of plasma. Up to 92 % of the adsorbed fibronectin was eluted using 2 M urea containing 1 M NaCl as elution agent. The adsorption–elution cycle was repeated ten times using the same PHEMA cryogel. No remarkable decrease was detected in the adsorption capacity of the gelatin-immobilised PHEMA cryogel.  相似文献   

17.
At low pH insulin is highly prone to self-assembly into amyloid fibrils. The process has been proposed to be affected by the existence of secondary nucleation pathways, in which already formed fibrils are able to catalyze the formation of new fibrils. In this work, we studied the fibrillation process of human insulin in a wide range of protein concentrations. Thioflavin T fluorescence was used for its ability to selectively detect amyloid fibrils, by mechanisms that involve the interaction between the dye and the accessible surface of the fibrils. Our results show that the rate of fibrillation and the Thioflavin T fluorescence intensity saturate at high protein concentration and that, surprisingly, the two parameters are proportional to each other. Because Thioflavin T fluorescence is likely to depend on the accessible surface of the fibrils, we suggest that the overall fibrillation kinetics is mainly governed by the accessible surface, through secondary nucleation mechanisms. Moreover, a statistical study of the fibrillation kinetics suggests that the early stages of the process are affected by stochastic nucleation events.  相似文献   

18.
Surface topography has vital roles in cellular response. Here, to investigate the mechanism behind cellular response to surface topography, we prepared honeycomb (HC)-patterned films from poly(epsilon-caprolactone) (PCL) with micropatterned surface topography by casting a polymer solution of water-immiscible solvent under high humidity. We characterized the adsorption of fibronectin (Fn) on the film using atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). The response of porcine aortic endothelial cells (PAECs) to adsorbed Fn molecules onto HC-patterned films was observed by immunofluorescence labeling of vinculin and the actin fiber of PAECs cultured for 1 and 72 h in serum-free medium. The expression of focal adhesion kinase autophosphorylated at the tyrosine residue (pFAK) at 1 h culture was determined using an immunoprecipitation method. Fn adsorbed selectively around the pore edges to form ring-shaped aggregates. The immunostaining results revealed that PAECs adhered to the HC-patterned films at focal contact points localized around pore peripheries. These points correspond to adsorption sites of Fn. The expression of pFAK after 1 h on the HC-patterned film was 3 times higher than that on a corresponding flat film, indicating that the signaling mediated by the binding between Fn and the integrin receptor was more highly activated on the HC-patterned film. These results suggest that the cellular response to HC-patterned films (e.g., adhesion pattern and phosphorylation of FAK) originates from the regularly aligned adsorption pattern of Fn determined by the pore structure of the film.  相似文献   

19.
We have developed a pseudo-phase model to predict the self-assembly of nonionic surfactants on hydrophobic solid or fluid interfaces and in bulk solution. The uniqueness of this model is that it provides the relationship between molecular structure and self-assembly in solution and on interfaces. This model requires the input of minimal new experimental data. The remaining model parameters may be calculated on the basis of the surfactant molecular structure. The validity of the model has been established by comparing predictions with a wide array of experimental data for nonionic surfactant adsorption at the hydrophobic solid-water interface and at the air-water interface. The same model is then used to predict the self-assembly in bulk solution. The model predictions for critical aggregation concentration, aggregate shapes, and adsorption isotherms of various surfactants are in good agreement with the experimental data available in the literature.  相似文献   

20.
The goal of this work was to investigate the dynamics of human plasma fibronectin (HFN) at the oil-water interface and to characterize its interactions with human serum albumin (HSA) by total internal reflection fluorescence microscopy (TIRFM). Among key results, we observed that fibronectin adsorption at the oil-water interface is rapid and essentially irreversible, even over short time scales. This may be due to the highly flexible nature of the protein, which allows its various domains to quickly attain energetically favorable conformations. On the other hand, HSA adsorption at the oil-water interface is relatively reversible at short times, and the protein is readily displaced by fibronectin even after HSA has been adsorbed at the interface for as long as 2 h. At longer adsorption times, HSA is able to more effectively resist complete displacement by fibronectin, although we observed significant fibronectin adsorption even under those conditions. Displacement of adsorbed fibronectin by HSA was negligible under all conditions. Fibronectin also adsorbs preferentially from a mixture of HFN and HSA, even when the concentration of HSA is substantially higher. This study is relevant to such emerging research thrusts as the development of biomimetic interfaces for a variety of applications, where there is a clear need for better understanding of the effects of interfacial competition, adsorption time scales, and extent of adsorption irreversibility on interfacial dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号