首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The purpose of this work was to study the effect of surface tension and surface dilatational modulus on foam performance in high-salinity water in a porous medium. In order to clarify the role of the surface dilatational property in foam flow in a porous medium, three systems were established: a system with low surface dilatational modulus and high surface tension, a system with low surface dilatational modulus and low surface tension, and a system with high surface dilatational modulus and low surface tension. Measurement of dilatational modulus and surface tension showed that lauroamide propyl betaine (LAB) could not reduce surface tension and that surface dilatational modulus was low. The addition of lauric acid (LCOOH) to LAB could not achieve high surface dilatational modulus; however, it could reach lower surface tension. The addition of myristic acid (MCOOH) to LAB could achieve high surface dilatational modulus and lower surface tension. Unlike the other two systems, the results of a dilatational modulus comprised of a mixture of MCOOH and LAB were not a constant, as demonstrated by varied surface area deformation outcomes. With the increase of deformation, surface dilatational modulus decreased. Results of foam flow tests showed that among the two lower surface dilatational modulus systems, LAB foam had higher flow resistance regardless of flow rate. Among the two systems of similar lower surface tension, the mixture of LAB and MCOOH showed higher flow resistance than the mixture of LAB and LCOOH. However, with the increase of flow rate, pressure differences between the two systems became smaller, which corresponded to the decrease of surface dilatational modulus with an increase of deformation.  相似文献   

2.
Recently, surfaces with intelligent wetting controllability have aroused increased attention. Endowing the surface with stimuli-responsive surface chemistry and tunable surface microstructure can achieve a surface with smart wetting performances. However, almost all existing surfaces only focused on single surface chemistry or micromorphology, thus to achieve smart multiple wetting regulation is still difficult. Herein, we report a ZnO coated shape memory polymer(SMP) surface, and the surface chemistry and micromorphology can be synergistically regulated. ZnO can provide adjustable surface chemistry under UV irradiation, and SMP can offer tunable micromorphology due to its shape memory effect(SME). Based on the combined effect between the above two features, surface wetting performance can be smartly regulated among multiple states. Moreover, due to the excellent controllability of the surface, the application in directional droplet transportation was also demonstrated. This paper offers a new surface with tunability in both surface chemistry and micromorphology, and given the excellent wetting controllability, the surface is believed to be applied in a lot of fields, such as droplet manipulation, fluidic devices and selective catalysis.  相似文献   

3.
Tetraethoxysilane has been co-hydrolyzed with functionalized organosilanes in a modified Stöber process to produce silica particles with amino, carboxylate or dihydroimidazole groups on the surface. The effects of reaction conditions and the loading of the functionalized organosilane on particle size was examined by TEM. Fluorescence spectroscopy of the surface amino groups covalently modified with fluorescamine, and the surface carboxylate groups with 4-bromomethyl-6,7-dimethoxycoumarin, demonstrated that these functional groups were accessible for further reaction. Changes in surface acidity and basicity caused by the presence of functional groups (amine, dihydroimidazole, carboxylate) on the particle surface were determined using an indicator titration technique. Particles with surface imidazole and amine groups and particles with surface carboxylate groups have enhanced basicity and acidity, respectively. Dihydroimidazole-modified silica had greater surface basicity than the amine-modified silica. The effect on basicity and acidity increases as the amount of added functionalized silane increases. However, this increase is nonlinear with respect to the increase in added functionalized silane. Particles with both surface dihydroimidazole and carboxylate groups demonstrated reduced surface basicity and acidity.  相似文献   

4.
The adsorption of a single and negatively charged polyion with varying flexibility onto a surface carrying both negative and positive charges representing a charged membrane surface has been investigated by using a simple model employing Monte Carlo simulations. The polyion was represented by a sequence of negatively charged hard spheres connected with harmonic bonds. The charged surface groups were also represented by charged hard spheres, and they were positioned on a hard surface slightly protruding into the solution. The surface charges were either frozen in a liquidlike structure or laterally mobile. With a large excess of positive surface charges, the classical picture of a strongly adsorbed polyion with an extended and flat configuration emerged. However, adsorption also appeared at a net neutral surface or at a weakly negatively charged surface, and at these conditions the adsorption was stronger with a flexible polyion as compared to a semiflexible one, two features not appearing in simpler models containing homogeneously charged surfaces. The presence of charged surface patches (frozen surface charges) and the ability of polarization of the surface charges (mobile surface charges) are the main reasons for the enhanced adsorption. The stronger adsorption with the flexible chain is caused by its greater ability to spatially correlate with the surface charges.  相似文献   

5.
贵金属纳米晶在电催化等领域具有广泛应用. 其催化活性往往与纳米晶体的表面结构直接相关,而催化剂的贵金属原子利用率与比表面积密切相关. 因小尺寸纳米晶难以保留特定的晶面,而具有特定表面的纳米晶通常结晶成尺寸较大、比表面积比较小的晶体,调控纳米晶的尺寸和表面结构两种策略似乎相互矛盾. 如何可控合成同时具有特定表面结构和大比表面积的贵金属纳米晶具有重要的意义. 本综述从形貌调控角度详细介绍提高贵金属纳米晶原子利用率的方法策略;总结调控单贵金属及其合金同时具有特定晶面和大比表面积的研究现状;最后,对纳米晶的形貌调控领域未来的发展趋势提出展望.  相似文献   

6.
Surface rheology governs a great variety of interfacial phenomena such as foams or emulsions and plays a dominant role in several technological processes such as high-speed coating. Its major difference with bulk rheology resides in the high compressibility of the surface phase, which is the direct consequence of the molecular exchange between adsorbed and dissolved species. In analogy to bulk rheology, a complex surface dilational modulus, epsilon, which captures surface tension changes upon defined area changes of the surface layer, can be defined. The module epsilon is complex, and the molecular interpretation of the dissipative process that gives rise to the imaginary part of the module is subject to some controversy. In this contribution, we used the oscillating bubble technique to study the surface dilational modulus in the mid-frequency range. The dynamic state of the surface layer was monitored by a pressure sensor and by surface second-harmonic generation (SHG). The pressure sensor measures the real and imaginary part of the modulus while SHG monitors independently the surface composition under dynamic conditions. The experiment allows the assessment of the contribution of the compositional term to the surface dilational modulus epsilon. Two aqueous surfactant solutions have been characterized: a surface elastic and a surface viscoelastic solution. The elastic surface layer can be described within the framework of the extended Lucassen-van den Tempel Hansen model. The change in surface concentration is in phase with the relative area change of the surface layer, which is in strong contrast with the results obtained from the surface viscoelastic solution. Here, surface tension, area change, and surface composition are phase-shifted, providing evidence for a nonequilibrium state within the surface phase. The data are used to assess existing surface rheology models.  相似文献   

7.
Tin complexes of phenoxide ligands having a range of dipole moments were prepared on the surface of indium-tin oxide (ITO). Surface complex loadings and stoichiometries were measured by quartz crystal microgravimetry. Work functions of ITO substrates treated with these various surface complexes were measured using a Kelvin probe. Surface complex dipole moments were then calculated based on measured surface loadings. Changes in the ITO work function effected by surface phenoxide complex introduction correlate with these surface complex dipole moments and with total surface dipole per unit area, and current densities in simple hole-only diode devices also correlate with these total surface dipoles.  相似文献   

8.
表面扩散的Monte Carlo初探   总被引:2,自引:0,他引:2  
利用MonteCarlo方法模拟了理想表面和分形表面上的扩散过程;通过模拟可以发现,表面扩散系数不仅与表面浓度有关,而且还与扩散的时间、表面的几何形貌等有关。在表面覆盖度比较高时,表面扩散系数有一极大值。与理想表面相比,分形表面会使扩散系数减小。  相似文献   

9.
溶胶凝胶法制备仿生超疏水性薄膜   总被引:15,自引:0,他引:15  
郭志光  周峰  刘维民 《化学学报》2006,64(8):761-766
通过溶胶-凝胶(Sol-Gel)法和自组装(Self-assembled)制备了具有超疏水性的薄膜, 水滴在该薄膜上的平衡静态接触角为155°~157°, 滑动角为3°~5°. 通过扫描电子显微镜(SEM)观察薄膜微观表面, 发现该薄膜表面分布了双层结构(Binary structure)的微纳米粗糙度的微凸体, 上表层微米微凸体的平均直径为0. 2 μm, 下表层纳米微凸体的平均直径约为13 nm, 其分布与荷叶表面的结构极其相似. 用X射线光电子能谱(XPS)对薄膜表面元素进行了成分分析, 结果表明, 其表面存在大量的F, Cl等元素, 它能显著降低薄膜表面的表面能. 薄膜超疏水性的原因可能是, 通过硅片经溶胶粒子表面制备的薄膜具有合适的表面粗糙度, 再经过全氟辛基三氯甲硅烷(FOTMS)化学修饰后, 薄膜表面能进一步降低, 这两个条件的有机结合就使得薄膜产生了超疏水性.  相似文献   

10.
The aim of this study was to evaluate physico-chemical properties and the healing capacity of surface treated titanium. Surface treatment combining sand-blasting, acid etching and alkaline etching (BIO surface) was evaluated together with machined titanium as a reference surface. Hydration, wetting angle, surface area and roughness parameters were evaluated for both surfaces. Stability of dental implants with both surfaces implanted in the tibia of dog was measured during the healing of twelve weeks. BIO surface exhibited lower wetting angle, larger surface area, higher degree of hydration and higher average roughness compared to machined titanium. Implants with the BIO surface maintained their stability during the whole healing period in contrast to those with machined titanium surface, which showed a statistically significant decrease in stability three and nine weeks after implantation.  相似文献   

11.
Reversible switching from a highly rough surface to another entirely smooth surface under external stimuli is crucial for intelligent materials applied in the fields of anti-fogging,self-cleaning,oil-water separation and biotechnology.In this work,a thermal-responsive liquid crystal elastomer (LCE) surface covered with oriented micropillars is prepared via a facile two-step crosslinking method coupled with an extrusion molding program.The reversible change of topological structures of the LCE surface along with temperature is investigated by metallographic microscope,atomic force microscopy and optical contact angle measuring system.At room temperature,the LCE sample is filled with plenty of micropillars with an average length of 8.76 μm,resulting in a super-hydrophobic surface with a water contact angle (WCA) of 135°.When the temperature is increased to above the clearing point,all the micropillars disappear,the LCE surface becomes entirely fiat and presents a hydrophilic state with a WCA of 64°.The roughness-related wetting property of this microstructured LCE surface possesses good recyclability in several heating/cooling cycles.This work realizes a truly reversible transformation from a highly rough surface to an entirely smooth surface,and might promote the potential applications of this dynamic-responsive LCE surface in smart sensors and biomimetic control devices.  相似文献   

12.
曹乐  殷开梁 《化学通报》2022,85(5):619-623
在单分散金属纳米粒子制备过程中,金属烧结现象需要尽量避免。烧结与诸多因素有关,其中金属纳米粒子的表面性质和能量对烧结作用有着重要影响。本工作利用分子动力学,以4种不同粒径的金属Ni纳米团簇为研究对象,在COMPASS力场下对不同温度下其表面积、扩散性质、表面能以及比表面能等进行了计算。结果显示,随着温度从300K升至1000K,纳米团簇的表面积稍微增加了约5%,表面层扩散系数显著增加了约3个数量级,表面能量升高了约15%,同时表面层与体相的能量差明显增加了近3倍。比表面能定义为增加单位表面积所引起的表面能的增量。计算结果表明,700K时团簇的比表面能比镍熔点处的表面张力高出约3个数量级,预示着团簇烧结具有强大的推动力。比表面能随温度升高以及粒径增大而下降,与热力学原理相一致。  相似文献   

13.
The nature of the interaction among Cu(II), adsorbed water, and quartz surface was studied using electron paramagnetic resonance (EPR) spectroscopy. The EPR lineshape gave information concerning the motional status of sorbed Cu(II) that revealed its binding strength at the surface. Two distinct absorption lines of sorbed Cu(II), namely, the liquid-type and the solid-type signal, were simultaneously observed at the fully hydrated surface at room temperature. The absorption lines and the variation of their intensity with experimental and measurement conditions such as degree of hydration, pH, ionic strength, and surface coverage indicated that there exist three kinds of Cu(II) entities, the inner-sphere surface complex, the outer-sphere surface complex, and the surface precipitate on the quartz surface, and that their concentrations change with experimental conditions. The reversible conversion of the liquid-type signal to the solid-type one during the drying-wetting or freezing-melting of the surface suggested the development of multiple layers of adsorbed water molecules on the quartz surface. It is assumed that the innermost layer of the water layers contains the inner-sphere Cu(II) surface complexes, while the outer layers contain the outer-sphere complexes whose binding strength decreases outward with increasing distance from the surface. The result of this work suggests that the sorption mechanism of a metal cation on a given mineral surface; hence its mobility in the environment may change significantly with the solution pH, the ionic strength, and the surface coverage.  相似文献   

14.
The composition and topography of calcite 10114 cleavage surfaces, with and without exposure to divalent metals, have been investigated as a function of relative humidity. Atomic force microscopy (AFM) was used to understand topographical changes on the calcite surface due to the presence of divalent metal and exposure to different humid environments. Ion scattering spectroscopy (ISS) was used to determine the composition of the near and outermost surface of the calcite after exposure to Cd and Pb and before exposure to the varying humidity conditions. In general, the extent of topographical changes observed on the calcite surface increased with the humidity level, though the initial step density of the cleaved calcite surface affects the extent of surface restructuring. Pretreatment of the calcite surface with aqueous divalent Pb prior to humidity exposure did not appear to alter the humidity-induced structural changes that occurred on the calcite surface. In contrast, calcite pretreated with divalent Cd showed little topographical change following exposure to high humidity. The results suggest that while Pb forms surface precipitates on the calcite surface, Cd exhibits a stronger interaction with the step edges of the calcite surface, which inhibits the ability of the calcite surface to restructure when exposed to a high relative humidity environment.  相似文献   

15.
We have performed molecular dynamics simulations of polyelectrolyte adsorption at oppositely charged surfaces from dilute polyelectrolyte solutions. In our simulations, polyelectrolytes were modeled by chains of charged Lennard-Jones particles with explicit counterions. We have studied the effects of the surface charge density, surface charge distribution, solvent quality for the polymer backbone, strength of the short-range interactions between polymers and substrates on the polymer surface coverage, and the thickness of the adsorbed layer. The polymer surface coverage monotonically increases with increasing surface charge density for almost all studied systems except for the system of hydrophilic polyelectrolytes adsorbing at hydrophilic surfaces. In this case the polymer surface coverage saturates at high surface charge densities. This is due to additional monomer-monomer repulsion between adsorbed polymer chains, which becomes important in dense polymeric layers. These interactions also preclude surface overcharging by hydrophilic polyelectrolytes at high surface charge densities. The thickness of the adsorbed layer shows monotonic dependence on the surface charge density for the systems of hydrophobic polyelectrolytes for both hydrophobic and hydrophilic surfaces. Thickness is a decreasing function of the surface charge density in the case of hydrophilic surfaces while it increases with the surface charge density for hydrophobic substrates. Qualitatively different behavior is observed for the thickness of the adsorbed layer of hydrophilic polyelectrolytes at hydrophilic surfaces. In this case, thickness first decreases with increasing surface charge density, then it begins to increase.  相似文献   

16.
Nanodot‐textured surface, nanorod‐textured surface and nanocomposite‐textured surface were prepared by the hydrothermal technique and successive ion layer absorption and reaction technique. The adhesion and friction properties of the three kinds of nanotextured surfaces were investigated using an atomic force microscope colloidal probe. Experimental results revealed that the nanorod‐textured surface and nanocomposite‐textured surface can significantly reduce adhesive and friction forces compared with a nanodot‐textured surface. The main reason for this phenomenon was that the nanorod and nanocomposite textures can reduce contact area between the sample surface and the colloidal probe. The effects of surface root mean square roughness, applied load and sliding velocity on the adhesion and friction behaviors of the nanotextured surfaces were investigated. The adhesive and friction forces of the nanotextured surfaces decreased with the increasing surface root mean square roughness. Compared with the nanocomposite‐textured surface, the nanorod‐textured surface has better adhesion and frictional performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
水在石墨(0001)面簇模型桥位上吸附的量子化学研究   总被引:1,自引:0,他引:1  
用从头计算方法对水在石墨(0001)面桥位上的吸附进行了研究.用C6H8原子簇模拟石墨表面,在6-31G*水平上计算了水在不同方向和位置上的吸附能量.研究表明:水在石墨面上的吸附很弱,属于物理吸附;在中性或带负电荷的石墨表面,当水分子中的氢原子靠近石墨面时,体系存在能量最小值,而在带正电荷的表面,当氧原子靠近石墨面时存在稳定的吸附点;不论表面带正电荷还是带负电荷,均对水分子的吸附起增强作用.  相似文献   

18.
Chemical homogeneous poly(dimethylsiloxane) (PDMS) surface with dot-like protrusion pattern was used to investigate the individual effect of surface microtopography on protein adsorption and subsequent biological responses. Fibrinogen (Fg) and fibronectin (Fn) were chosen as model proteins due to their effect on platelet and cell adhesion, respectively. Fg labeled with 125I and fluorescein isothiocyanate (FITC) was used to study its adsorption on flat and patterned surfaces. Patterned surface has a 46% increase in the adsorption of Fg when compared with flat surface. However, the surface area of the patterned surface was only 8% larger than that of the flat surface. Therefore, the increase in the surface area was not the only factor responsible for the increase in protein adsorption. Clear fluorescent pattern was visualized on patterned surface, indicating that adsorbed Fg regularly distributed and adsorbed most on the flanks and valleys of the protrusions. Such distribution and local enrichment of Fg presumably caused the specific location of platelets adhered from platelet-rich plasma (PRP) and flowing whole blood (FWB) on patterned surface. Furthermore, the different combination of surface topography and pre-adsorbed Fn could influence the adhesion of L929 cells. The flat surface with pre-adsorbed Fn was the optimum substrate while the virgin patterned surface was the poor substrate in terms of L929 cells spread.  相似文献   

19.
纳米KH颗粒的热稳定性及其化学反应活性   总被引:2,自引:0,他引:2  
考察了纳米尺寸的KH颗粒在不同温度热处理后比表面积的变化及其与化学反应活性之间的关系.纳米KH热处理后,比表面积随着热处理温度升高而减小,但单位表面的化学反应活性却增大.表明热处理改变了KH表面的状态,说明大的比表面积是构成纳米KH高活性的一个主要原因,而具有高表面能的表面也是高活性的一个重要因素.纳米KH具有使苯乙烯快速聚合的催化作用.  相似文献   

20.
采用模板法在形状记忆聚合物表面获得一种具有形状记忆特征的表面微结构, 在氧等离子作用下, 表面呈现低黏附的水下超疏油特性. 在外压作用下, 表面微结构发生坍塌, 失去水下超疏油性, 同时表面对油滴呈高黏附特征. 在120 ℃热处理后, 表面微结构恢复到了原始状态, 在等离子进一步作用下, 表面即可恢复到最初的低黏附水下超疏油状态. 因此通过外压、 热处理及等离子作用即可实现对表面微结构及其水下油黏附性能的可逆调控. 研究表明, 表面不同的微结构状态赋予表面不同的黏附性能, 在原始表面液滴处于低黏附的Cassie态, 而在坍塌结构表面水滴处于高黏附的Wenzel态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号