首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 392 毫秒
1.
In this paper is reported an extensive NMR characterization of N-methyl-N-propyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR13TFSI) room-temperature ionic liquid and its mixtures with LiTFSI. NMR was used to investigate the interactions between the ionic liquid and lithium salt and the diffusion coefficients of all ionic species present in these mixtures. The results are compared with previous DSC, Raman, and electrochemical investigations.  相似文献   

2.
The reduction of selected lanthanide cations to the zerovalent state in the room-temperature ionic liquid [Me3N(n)Bu][TFSI] is reported (where TFSI = bistriflimide, [N(SO2CF3)2]-). The lanthanide cations were introduced to the melt as the TFSI hydrate complexes [Ln(TFSI)3(H2O)3] (where Ln = La(III), Sm(III) or Eu(III)). The lanthanum compound [La(TFSI)3(H2O)3] has been crystallographically characterized, revealing the first structurally characterized f-element TFSI complex. The lanthanide in all three complexes was shown to be reducible to the metallic state in [Me3N(n)Bu][TFSI]. For both the Eu and Sm complexes, reduction to the metallic state was achieved via divalent species, and there was an additional observation of the electrodeposition of Eu metal.  相似文献   

3.
The influence of the Zn(2+) concentration and temperature on the electrochemical reduction of O(2) in a solution of zinc bis(trifluoromethanesulfonyl)imide (Zn(TFSI)(2)) salt in 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR(14)TFSI) ionic liquid is presented. ZnO nanocrystalline films were then electrodeposited, under enhanced O(2) reduction, at temperatures in the 75-150 °C range. Their morphology, chemical composition, structural and optical properties were analyzed. In contrast to the polar-oriented ZnO usually obtained from aqueous and conventional solvent based electrolytes, nanocrystalline films oriented along non-polar directions, (11 ?10) and (11 ?20), were obtained from this ionic liquid electrolyte. A significant content of carbon was detected in the films, pointing to the active participation and crucial effect of pyrrolidinium cation (and/or byproducts) during the electrodeposition. The films showed semiconducting behavior with an optical gap between 3.43 and 3.53 eV as measured by optical transmittance. Their room temperature photoluminescence spectra exhibited two different bands centered at ~3.4 and ~2.2 eV. The intensity ratio between both bands was found to depend on the deposition temperature. This work demonstrates the great potential of ionic liquids based electrolytes for the electrodeposition of ZnO nanocrystalline thin films with innovative microstructural and optoelectronic properties.  相似文献   

4.
Room-temperature ionic liquids (RTIL, IL) are stable liquids composed of anions and cations. N-methyl-N-propyl-pyrrolidinium (P(13), Py(13), PYR(13), or mppy) is an important cation and produces stable ILs with various anions. In this study two amide-type anions, bis(trifluoromethanesulfonyl)amide [N(SO(2)CF(3))(2), TFSA, TFSI, NTf(2), or Tf(2)N] and bis(fluorosulfonyl)amide [N(SO(2)F)(2), FSA, or FSI], were investigated. In addition to P(13)-TFSA and P(13)-FSA, lithium salt doped samples were prepared (P(13)-TFSA-Li and P(13)-FSA-Li). The individual ion diffusion coefficients (D) and spin-lattice relaxation times (T(1)) were measured by (1)H, (19)F, and (7)Li NMR. At the same time, the ionic conductivity (σ), viscosity (η), and density (ρ) were measured over a wide temperature range. The van der Waals volumes of P(13), TFSA, FSA, Li(TFSA)(2), and Li(FSA)(3) were estimated by molecular orbital calculations. The experimental values obtained in this study were analyzed by the classical Stokes-Einstein, Nernst-Einstein (NE), and Stokes-Einstein-Debye equations and Walden plots were also made for the neat and binary ILs to clarify physical and mobile properties of individual ions. From the temperature-dependent velocity correlation coefficients for neat P(13)-TFSA and P(13)-FSA, the NE parameter 1-ξ was evaluated. The ionicity (electrochemical molar conductivity divided by the NE conductivity from NMR) and the 1-ξ had exactly the same values. The rotational and translational motions of P(13) and jump of a lithium ion are also discussed.  相似文献   

5.
The liquid structure of 1-ethyl-3-methylimidazolium bis-(trifluoromethanesulfonyl) imide (EMI(+)TFSI(-)) has been studied by means of large-angle X-ray scattering (LAXS), (1)H, (13)C, and (19)F NMR, and molecular dynamics (MD) simulations. LAXS measurements show that the ionic liquid is highly structured with intermolecular interactions at around 6, 9, and 15 A. The intermolecular interactions at around 6, 9, and 15 A are ascribed, on the basis of the MD simulation, to the nearest neighbor EMI(+)...TFSI(-) interaction, the EMI(+)...EMI(+) and TFSI(-)...TFSI(-) interactions, and the second neighbor EMI+...TFSI(-) interaction, respectively. The ionic liquid involves two conformers, C(1) (cis) and C(2) (trans), for TFSI(-), and two conformers, planar cis and nonplanar staggered, for EMI(+), and thus the system involves four types of the EMI(+)...TFSI(-) interactions in the liquid state by taking into account the conformers. However, the EMI(+)...TFSI(-) interaction is not largely different for all combinations of the conformers. The same applies alsoto the EMI(+)...EMI(+) and TFSI(-)...TFSI(-) interactions. It is suggested from the 13C NMR that the imidazolium C(2) proton of EMI(+) strongly interacts with the O atom of the -SO(2)(CF(3)) group of TFSI(-). The interaction is not ascribed to hydrogen-bonding, according to the MD simulation. It is shown that the liquid structure is significantly different from the layered crystal structure that involves only the nonplanar staggered EMI(+) and C(1) TFSI(-) conformers.  相似文献   

6.
Thermodynamics, structure, and dynamics of an ionic liquid based on a quaternary ammonium salt with ether side chain, namely, N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, MOENM2E TFSI, are investigated by molecular dynamics (MD) simulations. Average density and configurational energy of simulated MOENM2E TFSI are interpreted with models that take into account empirical ionic volumes. A throughout comparison of the equilibrium structure of MOENM2E TFSI with previous results for the more common ionic liquids based on imidazolium cations is provided. Several time correlation functions are used to reveal the microscopic dynamics of MOENM2E TFSI. Structural relaxation is discussed by the calculation of simultaneous space-time correlation functions. Temperature effects on transport coefficients (diffusion, conductivity, and viscosity) are investigated. The ratio between the actual conductivity and the estimate from ionic diffusion by the Nernst-Einstein equation indicates that correlated motion of neighboring ions in MOENM2E TFSI is similar to imidazolium ionic liquids. In line with experiment, Walden plot of conductivity and viscosity indicates that simulated MOENM2E TFSI should be classified as a poor ionic liquid.  相似文献   

7.
A Th(IV) compound, [Th(TFSI)4(HTFSI)].2H2O [where TFSI = N(SO2CF3)2], has been synthesized and characterized using elemental analysis, thermogravimetric analysis, and vibrational spectroscopy. The analysis suggests that the TFSI anion coordinates to the metal center via the sulfonyl oxygens as well as provides evidence for the coordination of HTFSI. The voltammetric behavior of this compound has been studied in the room-temperature ionic liquid [Me3NnBu][TFSI], and results show that Th(IV) is reduced to Th(0) in this ionic liquid in a single reduction step. Analysis of cyclic voltammograms shows that an insoluble product is being formed at the electrode surface, which is attributed to the formation of ThO2 by reaction with water. The E0 value for the reduction of Th(IV) to Th(0) has been determined to be -2.20 V (vs Fc+/Fc; -1.80 V vs SHE). A comparison of this E0 value with those obtained for Th(IV) reduction in a LiCl-KCl eutectic (400 degrees C), water, and nonaqueous solvents shows that the reduction in [Me3NnBu][TFSI] is easier to accomplish than that in these other solvents.  相似文献   

8.
The solvation structure of the lithium ion in room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide (EMI(+)TFSI(-)) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (BMP(+0TFSI(-)) has been studied by Raman spectroscopy and DFT calculations. Raman spectra of EMI(+)TFSI(-) and BMP(+)TFSI(-) containing Li(+)TFSI(-) over the range 0.144-0.589 and 0.076-0.633 mol dm(-3), respectively, were measured at 298 K. A strong 744 cm-1 band of the free TFSI(-) ion in the bulk weakens with increasing concentration of the lithium ion, and it revealed by analyzing the intensity decrease that the two TFSI(-) ions bind to the metal ion. The lithium ion may be four-coordinated through the O atoms of two bidentate TFSI(-) ions. It has been established in our previous work that the TFSI(-) ion involves two conformers of C(1) (cis) and C(2) (trans) symmetries in equilibrium, and the dipole moment of the C(1) conformer is significantly larger than that of the C(2) conformer. On the basis of these facts, the geometries and SCF energies of possible solvate ion clusters [Li(C(1)-TFSI(-))(2)](-), [Li(C(1)-TFSI(-))(C(2)-TFSI(-))](-), and [Li(C(2)-TFSI(-))(2)](-) were examined using the theoretical DFT calculations. It is concluded that the C(1) conformer is more preferred to the C(2) conformer in the vicinity of the lithium ion.  相似文献   

9.
采用Raman光谱、傅里叶转换红外光谱和X-射线衍射光谱研究N-甲基-N-丙基哌啶双三氟甲磺酸亚胺离子液体(PP13TFSI)和双三氟甲磺酸亚胺锂盐(LiTFSI)对PVDF-HFP聚合物聚合方式的影响,结果表明,PP13TFSI、LiTFSI和PVDF-HFP是共混存在的,同时加入PP13TFSI和LiTFSI会使聚合物的聚合方式由晶体结构转变为无定形结构. 通过对电解质及其各组分的线性扫描伏安曲线和热重曲线分析可知,溶剂N-甲基吡咯烷酮(NMP)容易残留在凝胶聚合物电解质(ILGPE)中,这会降低ILGPE的电化学稳定性和热稳定性. 作者对固态LiFePO4|ILGPE|Li电池的倍率性能进行了研究,实验结果表明其具有较好的倍率性能,当电池倍率由C/10增大至2C,然后再回到C/10时,其容量可以恢复到原来的90.9%左右. 该研究结果对理解PP13TFSI和LiTFSI在ILGPE中的作用机理具有重要的意义.  相似文献   

10.
The lithium solvation in (1 -x)(EMI-TFSI), xLiTFSI ionic liquids where EMI(+) is the 1-ethyl-3-methylimidazolium cation and TFSI(-) the bis(trifluoromethanesulfonyl)imide anion, is shown by Raman spectroscopy to involve essentially [Li(TFSI)(2)](-) anionic clusters for 0 < x < 0.4, but addition of stoichiometric amounts of solvents S such as oligoethers changes the lithium solvation into [Li(S)(m)](+) cationic clusters; the lithium transference number in TFSI-based ionic liquid electrolytes for lithium batteries should thus be strongly improved.  相似文献   

11.
The magnetic field effects (MFEs) on photoinduced hydrogen abstraction reactions of benzophenone (BP) with thiophenol (PhSH) in the ionic liquids (ILs) N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl) imide (TMPA TFSI), N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl) imide (P13 TFSI), and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide (PP13 TFSI) were investigated at 296 K by using a nanosecond laser flash photolysis technique under magnetic fields of 0-1.7 T. Large MFEs were observed for the first time in the ILs. In TMPA TFSI, the yield of the benzophenone ketyl radical gradually decreased with increasing magnetic field strength from 0 to 1.7 T, producing a 20% decrease at 1.7 T.  相似文献   

12.
Our recent studies identified a novel pathway of nicotinamide metabolism that involves 4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR) and demonstrated its endothelial cytotoxic effect. This study tested the effects of 4PYR and its metabolites in experimental models of breast cancer. Mice were divided into groups: 4T1 (injected with mammary 4T1 cancer cells), 4T1 + 4PYR (4PYR-treated 4T1 mice), and control, maintained for 2 or 21 days. Lung metastasis and endothelial function were analyzed together with blood nucleotides (including 4PYR), plasma amino acids, nicotinamide metabolites, and vascular ectoenzymes of nucleotide catabolism. 4PYR metabolism was also evaluated in cultured 4T1, MDA-MB-231, MCF-7, and T47D cells. An increase in blood 4PYR in 4T1 mice was observed at 2 days. 4PYR and its metabolites were noticed after 21 days in 4T1 only. Higher blood 4PYR was linked with more lung metastases in 4T1 + 4PYR vs. 4T1. Decreased L-arginine, higher asymmetric dimethyl-L-arginine, and higher vascular ecto-adenosine deaminase were observed in 4T1 + 4PYR vs. 4T1 and control. Vascular relaxation caused by flow-dependent endothelial activation in 4PYR-treated mice was significantly lower than in control. The permeability of 4PYR-treated endothelial cells was increased. Decreased nicotinamide but enhanced nicotinamide metabolites were noticed in 4T1 vs. control. Reduced N-methylnicotinamide and a further increase in Met2PY were observed in 4T1 + 4PYR vs. 4T1 and control. In cultured breast cancer cells, estrogen and progesterone receptor antagonists inhibited the production of 4PYR metabolites. 4PYR formation is accelerated in cancer and induces metabolic disturbances that may affect cancer progression and, especially, metastasis, probably through impaired endothelial homeostasis. 4PYR may be considered a new oncometabolite.Subject terms: Mechanisms of disease, Pathogenesis, Breast cancer  相似文献   

13.
合成并考察了N-甲基-N-乙(丙,丁)基哌啶-二( 三氟甲基磺酰) 亚胺三种离子液体( PP12(3,4)TFSI )作为电解液添加剂的影响. 使用热分析和电化学技术研究了离子液体混合电解液的热稳定性和电化学性能.实验表明,哌啶型离子液体可以提高有机电解液的热稳定性,并且侧链的长短对 LiCoO2 电极的电化学性能有重要的影响.当以PP13TFSI配成的混合电解液,在3.0~4.35 V之间、电流密度为150 mA•g-1时, LiCoO2 电极的首次放电容量为156.6 mAh•g-1,200周循环后容量为133.9mAh•g-1,容量保持率为85.5%,远远优于在传统有机电解液中的循环性能.  相似文献   

14.
Thin films of MnO(2) nanoparticles were grown using the layer-by-layer method with poly(diallyldimetylammonium) as the intercalated layer. The film growth was followed by UV-vis, electrochemical quartz crystal microbalance (EQCM), and atomic force microscopy. Linear growth due to electrostatic immobilization of layers was observed up to 30 bilayers, but electrical connectivity was maintained only for 12 MnO(2)/PPDA bilayers. The electrochemical characterization of this film in 1-butyl-2,3-dimethyl-imidazolium (BMMI) bis(trifluoromethanesulfonyl)imide (TFSI) (BMMITFSI) with and without addition of a lithium salt indicated a higher electrochemical response of the nanostructured electrode in the lithium-containing electrolyte. On the basis of EQCM experiments, it was possible to confirm that the charge compensation process is achieved mainly by the TFSI anion at short times (<2 s) and by BMMI and lithium cations at longer times. The fact that large ions like TFSI and BMMI participate in the electroneutrality is attributed to the redox reaction that occurs at the superficial sites and to the high concentration of these species compared to that of lithium cations.  相似文献   

15.
Two ionic liquids based upon N-alkyl-N-methylpyrrolidinium cations (PY(1R)(+)) (R=3 for propyl or 4 for butyl) and the bis(fluorosulfonyl)imide (FSI(-)), N(SO2F)2(-), anion have been extensively characterized. The ionic conductivity and viscosity of these materials are found to be among the highest and lowest, respectively, reported for aprotic ionic liquids. Both ionic liquids crystallize readily on cooling and undergo several solid-solid phase transitions on heating prior to melting. PY13FSI and PY14FSI are found to melt at -9 and -18 degrees C, respectively. The thermal stability of PY13FSI and PY14FSI is notably lower than for the analogous salts with the bis(trifluoromethanesulfonyl)imide (TFSI(-)), N(SO2CF3)2(-), anion. Both ionic liquids have a relatively wide electrochemical stability window of approximately 5 V.  相似文献   

16.
Molecular dynamics simulation studies of the structure and the differential capacitance (DC) for the ionic liquid (IL) N-methyl-N-propylpyrrolidinium bis(trifluoromethane)sulfonyl imide ([pyr(13)][TFSI]) near a graphite electrode have been performed as a function temperature and electrode potential. The IL exhibits a multilayer structure that extends 20-30 ? from the electrode surface. The composition and ion orientation in the innermost layer were found to be strongly dependent on the electrode potential. While at potentials near the potential of zero charge (PZC), both cations and anions adjacent to the surface are oriented primarily perpendicular to the surface, the counterions in first layer orient increasingly parallel to the surface with increasing electrode potential. A minimum in DC observed around -1 V(RPZC) (potential relative to the PZC) corresponds to the point of highest density of perpendicularly aligned TFSI near the electrode. Maxima in the DC observed around +1.5 and -2.5 V(RPZC) are associated with the onset of "saturation", or crowding, of the interfacial layer. The asymmetry of DC versus electrode polarity is the result of strong interactions between the fluorine of TFSI and the surface, the relatively large footprint of TFSI compared to pyr(13), and the tendency of the propyl tails of pyr(13) to remain adsorbed on the surface even at high positive potentials. Finally, an observed decreased DC and the disappearance of the minimum in DC near the PZC with increasing temperature are likely due to the increasing importance of entropic/excluded volume effects (interfacial crowding) with increasing temperature.  相似文献   

17.
Temperature dependence of the physiochemical characteristics of a room-temperature ionic liquid consisting of trimethylhexylammonium (TMHA) cation and bis(trifluoromethane) sulfonylimide (TFSI) anion containing different concentrations of LiTFSI salt was examined. Electrochemical properties of a spinel LiMn(2)O(4) electrode in 1 M LiTFSI/TMHA-TFSI ionic electrolyte were investigated at different temperatures by using cyclic voltammetry, galvanostatic measurements, and electrochemical impedance spectroscopy. The Li/ionic electrolyte/LiMn(2)O(4) cell exhibited satisfactory electrochemical properties with a discharge capacity of 108.2 mA h/g and 91.4% coulombic efficiency in the first cycle under room temperature. At decreased temperature, reversible capacity of the cell could not attain a satisfactory value due to the high internal resistance of the cell and the large activation energy for lithium ion transfer through the electrode/electrolyte interface. Anodic electrolyte oxidation results in the decrease of coulombic efficiency with increasing temperature. Irreversible structural conversion of the spinel LiMn(2)O(4) in the ionic electrolyte, possibly associated with the formation of TMHA intercalated compounds and/or Jahn-Teller distortion, was considered to be responsible for the electrochemical decay with increasing cycles.  相似文献   

18.
Organic small structure quinones go with ionic liquids electrolytes would exhibit ultrastable electrochemical properties.In this study,calix[6]quinone(C6Q) cathode was matched with ionic liquid electrolyte Li[TFSI]/[PY13][TFSI](bis(trifluoromethane)sulfonimide lithium salt/N-methyl-N-pro pylpyrrolidinium bis(trifluoromethanesulfonyl)amide) to assemble lithium-ion batteries(LIBs).The electrochemical performance of LIBs was systematically studied.The capacity retention rates of C6Q through 1000 cycles at current densities of 0.2 C and 0.5 C were 70% and 72%,respectively.At 5 C, the capacity was maintained at 190 mAh g-1 after 1000 cycles,and 155 mAh g-1 even after 10,000 cycles,comparable to inorganic materials.This work would give a big push to the practical process of organic electrode materials in energy storage.  相似文献   

19.
Molecular dynamics (MD) simulations have been performed on N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (mppy(+)TFSI(-)) and N,N-dimethyl- pyrrolidinium bis(trifluoromethanesulfonyl)imide (mmpy(+)TFSI(+)) ionic liquids (ILs) doped with 0.25 mol fraction LiTFSI salt at 303-500 K. The liquid density, ion self-diffusion coefficients, and conductivity predicted by MD simulations were found to be in good agreement with experimental data, where available. MD simulations reveal that the Li(+) environment is similar in mppy(+)TFSI(-) and mmpy(+)TFSI(+) ILs doped with LiTFSI. The Li(+) cations were found to be coordinated on average by slightly less than four oxygen atoms with each oxygen atom being contributed by a different TFSI(-) anion. Significant lithium aggregation by sharing up to three TFSI(-) anions bridging two lithiums was observed, particularly at lower temperatures where the lithium aggregates were found to be stable for tens of nanoseconds. Polarization of TFSI(-) anions is largely responsible for the formation of such lithium aggregates. Li(+) transport was found to occur primarily by exchange of TFSI(-) anions in the first coordination shell with a smaller (approximately 30%) contribution also due to Li(+) cations diffusing together with their first coordination shell. In both ILs, ion self-diffusion coefficients followed the order Li(+) < TFSI(-) < mmpy(+) or mppy(+) with all ion diffusion in mmpy(+)TFSI(-) being systematically slower than that in mppy(+)TFSI(-). Conductivity due to the Li(+) cation in LiTFSI doped mppy(+)TFSI(-) IL was found to be greater than that for a model poly(ethylene oxide)(PEO)/LiTFSI polymer electrolyte but significantly lower than that for an ethylene carbonate/LiTFSI liquid electrolyte. Finally, the time-dependent shear modulus for the LiTFSI doped ILs was found to be similar to that for a model poly(ethylene oxide)(PEO)/LiTFSI polymer electrolyte on the subnanosecond time scale.  相似文献   

20.
The surface structure of trimethylpropylammonium bis(trifluoromethanesulfonyl)imide ([TMPA] [TFSI]) is studied by high-resolution Rutherford backscattering spectroscopy at room temperature. The results provide direct evidence of the molecular ordering at the surface. The C1 conformer of the [TFSI] anion is dominant among two stable conformers, and the anions are oriented with their CF3 groups pointing toward the vacuum in the outermost molecular layer. The anions in the second molecular layer also show preferred orientation although it is rather weak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号