首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N. Hannachi  K. Guidara  F. Hlel 《Ionics》2011,17(5):463-471
The Ac electrical conductivity and the dielectric relaxation properties of the [(C3H7)4N]2Cd2Cl6 polycrystalline sample have been investigated by means of impedance spectroscopy measurements over a wide range of frequencies and temperatures, 209 Hz–5 MHz and 361–418 K, respectively. The purpose is to make a difference between the electrical and dielectric properties of the polycrystalline sample and single crystal. Besides, a detailed analysis of the impedance spectrum suggests that the electrical properties of the material are strongly temperature-dependent. Plots of (Z" versus Z') are well fitted to an equivalent circuit model consisting of a series combination of grains and grains boundary elements. Moreover, the temperature dependence of the electrical conductivity in the different phases follows the Arrhenius law and the frequency dependence of σ (ω) follows the Jonscher’s universal dynamic law. Furthermore, the modulus plots can be characterized by full width at half height or in terms of a nonexperiential decay function φ(t) = exp(t/t)β. Finally, the imaginary part of the permittivity constant is analyzed with the Cole–Cole formalism.  相似文献   

2.
Solid polymer electrolytes (SPE) based on poly-(vinyl alcohol) (PVA)0.7 and sodium iodide (NaI)0.3 complexed with sulfuric acid (SA) at different concentrations were prepared using solution casting technique. The structural properties of these electrolyte films were examined by X-ray diffraction (XRD) studies. The XRD data revealed that sulfuric acid disrupt the semi-crystalline nature of (PVA)0.7(NaI)0.3 and convert it into an amorphous phase. The proton conductivity and impedance of the electrolyte were studied with changing sulfuric acid concentration from 0 to 5.1 mol/liter (M). The highest conductivity of (PVA)0.7(NaI)0.3 matrix at room temperature was 10−5 S cm−1 and this increased to 10−3 S cm−1 with doping by 5.1 M sulfuric acid. The electrical conductivity (σ) and dielectric permittivity (ε′) of the solid polymer electrolyte in frequency range (500 Hz–1 MHz) and temperature range (300–400) K were carried out. The electrolyte with the highest electrical conductivity was used in the fabrication of a sodium battery with the configuration Na/SPE/MnO2. The fabricated cells give open circuit voltage of 3.34 V and have an internal resistance of 4.5 kΩ.  相似文献   

3.
The lead pyrophosphate, Pb2P2O7, compound was prepared by conventional solid-state reaction and identified by X-ray powder diffractometer. Pb2P2O7 has a triclinic structure whose electrical properties were studied using impedance spectroscopy technique. Both impedance and modulus analysis exhibit the grain and grain boundary contribution to the electrical response of the sample. The temperature dependence of the bulk and grain boundary conductivity were found to obey the Arrhenius law with activation energies E g = 0.66 eV and E gb = 0.67 eV, respectively. The scaling behavior of the imaginary part of the complex impedance suggests that the relaxation describes the same mechanism at various temperatures.  相似文献   

4.
We have studied photoluminescence and thermoluminescence (PL and TL) in CaGa2Se4:Eu crystals in the temperature range 77–400 K. We have established that broadband photoluminescence with maximum at 571 nm is due to intracenter transitions 4f6 5d–4f7 (8S7/2) of the Eu2+ ions. From the temperature dependence of the intensity (log I–103/T), we determined the activation energy (E a = 0.04 eV) for thermal quenching of photoluminescence. From the thermoluminescence spectra, we determined the trap depths: 0.31, 0.44, 0.53, 0.59 eV. The lifetime of the excited state 4f6 5d of the Eu2+ ions in the CaGa2Se4 crystal found from the luminescence decay kinetics is 3.8 μsec. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 112–116, January–February, 2009.  相似文献   

5.
The temperature dependence of the electrical conductivity of the compound 2,4,4-trimethyl-4,5-dihydro-3H-benzo[b] [1,4] diazepin-1-ium tetrachlorocadmiate in the different phases follows the Arrhenius law. The imaginary part of the permittivity constant is analyzed with the Cole–Cole formalism. In the temperature range 348–394 K, the activation energy of conductivity obtained from complex permittivity in regions I and II are, respectively, 1.03 and 0.33 eV, and E m (in regions I and II are, respectively, 0.97 and 0.36 eV) obtained from the modulus spectra is close, suggesting that the ion transport is probably due to a hopping mechanism. The Kohlrausch–Williams–Watts function, j(t) = exp( - ( \fractt\textKWW )b ) \varphi (t) = \exp \left( { - {{\left( {\frac{t}{{{\tau_{\text{KWW}}}}}} \right)}^\beta }} \right) , and the coupling model are utilized for analyzing electric modulus at various temperatures. The decreasing of β at 373 K is due to approaching the temperatures of change in the conduction mechanism of the sample.  相似文献   

6.
Development and characterisation of polyethylene oxide (PEO)-based nanocomposite polymer electrolytes comprising of (PEO-SiO2): NH4SCN is reported. For synthesis of the said electrolyte, polyethylene oxide has been taken as polymer host and NH4SCN as an ionic charge supplier. Sol–gel-derived silica powder of nano dimension has been used as ceramic filler for development of nanocomposite electrolytes. The maximum conductivity of electrolyte ∼2.0 × 10−6 S/cm is observed for samples containing 30 wt.% silica. The temperature dependence of conductivity seems to follow an Arrhenius-type, thermally activated process over a limited temperature range.  相似文献   

7.
The AC conductivity of the LiCaPO4 compound has been measured in the temperature range 634–755 K and the frequency range 300 Hz–5 MHz. The impedance data were fitted to an equivalent circuit consisting of series combination of grains, grains boundary, and electrode elements. Dielectric data were analyzed using complex electrical modulus M* at various temperatures. The modulus plots are characterized by the presence of two relaxation peaks thermally activated. The activation energies obtained from the analysis of M″ (0.90 eV) and conductivity data (0.94 eV) are very close, revealing an ionic hopping mechanism.  相似文献   

8.
The ionic conductivity of PVC–ENR–LiClO4 (PVC, polyvinyl chloride; ENR, epoxidized natural rubber) as a function of LiClO4 concentration, ENR concentration, temperature, and radiation dose of electron beam cross-linking has been studied. The electrolyte samples were prepared by solution casting technique. Their ionic conductivities were measured using the impedance spectroscopy technique. It was observed that the relationship between the concentration of salt, as well as temperature, and conductivity were linear. The electrolyte conductivity increases with ENR concentration. This relationship was discussed using the number of charge carrier theory. The conductivity–temperature behaviour of the electrolyte is Arrhenian. The conductivity also varies with the radiation dose of the electron beam cross-linking. The highest room temperature conductivity of the electrolyte of 8.5 × 10−7 S/cm was obtained at 30% by weight of LiClO4. The activation energy, E a and pre-exponential factor, σ o, are 1.4 × 10−2 eV and 1.5 × 10−11 S/cm, respectively.  相似文献   

9.
Optical absorption spectra in thin [N(CH3)4]2CuCl4 crystals in the thickness range 10 μm ≤ d < 100 μm have been studied. Strengthening of the crystal field has been found with a decrease in the [N(CH3)4]2CuCl4 crystal size. The reasons for absorption band shifts in the visible region depending on the [N(CH3)4]2CuCl4 crystal thickness and the manifestation of a size effect in crystals with an incommensurate superstructure are discussed.  相似文献   

10.
Solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 was prepared by sol-gel method under different sintering conditions. The structural identification, surface morphology, electrochemical window, ionic conductivity, and activation energy of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets were investigated by X-ray diffraction, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. It is found that the sintering temperature and time have considerable effect on the properties of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets. The Li1.3Al0.3Ti1.7(PO4)3 pellet sintered at 900 °C for 2 h is denser than the pellets sintered at other conditions. Different sintering conditions result in the sintered pellet with different porosity. However, the sintering conditions have little effect on the electrochemical window of Li1.3Al0.3Ti1.7(PO4)3. Among the Li1.3Al0.3Ti1.7(PO4)3 pellets sintered at various conditions, the pellet sintered at 900 °C for 2 h shows the highest ionic conductivity of 3.46 × 10−4 S cm−1 and the lowest activation energy of 0.2821 eV.  相似文献   

11.
The complex impedance of the Ag2ZnP2O7 compound has been investigated in the temperature range 419–557 K and in the frequency range 200 Hz–5 MHz. The Z′ and Z′ versus frequency plots are well fitted to an equivalent circuit model. Dielectric data were analyzed using complex electrical modulus M* for the sample at various temperatures. The modulus plot can be characterized by full width at half-height or in terms of a non-exponential decay function f( \textt ) = exp( - \textt/t )b \phi \left( {\text{t}} \right) = \exp {\left( { - {\text{t}}/\tau } \right)^\beta } . The frequency dependence of the conductivity is interpreted in terms of Jonscher’s law: s( w) = s\textdc + \textAwn \sigma \left( \omega \right) = {\sigma_{\text{dc}}} + {\text{A}}{\omega^n} . The conductivity σ dc follows the Arrhenius relation. The near value of activation energies obtained from the analysis of M″, conductivity data, and equivalent circuit confirms that the transport is through ion hopping mechanism dominated by the motion of the Ag+ ions in the structure of the investigated material.  相似文献   

12.
A polycrystalline sample of KCa2Nb5O15 with tungsten bronze structure was prepared by a mixed oxide method at high temperature. A preliminary structural analysis of the compound showed an orthorhombic crystal structure at room temperature. Surface morphology of the compound shows a uniform grain distribution throughout the surface of the sample. Studies of temperature variation on dielectric response at various frequencies show that the compound has a transition temperature well above the room temperature (i.e., 105°C), which was confirmed by the polarization measurement. Electrical properties of the material have been studied using a complex impedance spectroscopy (CIS) technique in a wide temperature (31–500°C) and frequency (102–106 Hz) range that showed only bulk contribution and non-Debye type relaxation processes in the material. The activation energy of the compound (calculated from both the loss and modulus spectrum) is same, and hence the relaxation process may be attributed to the same type of charge carriers. A possible ‘hopping’ mechanism for electrical transport processes in the system is evident from the modulus analysis. A plot of dc conductivity (bulk) with temperature variation demonstrates that the compound exhibits Arrhenius type of electrical conductivity.   相似文献   

13.
We have investigated the structural and dehydriding properties of Ca(BH4)2. It was found that Ca(BH4)2 undergoes a structural phase transformation from an orthorhombic low-temperature (LT) modification into a tetragonal high-temperature (HT) modification between 433 K and 523 K. The amount of hydrogen desorbed from Ca(BH4)2 during the pressure–composition (pc) isotherm measurement was 5.9 mass%. This hydrogen desorption is caused by the partial dehydrogenation of Ca(BH4)2 accompanied by the formation of CaH2 and orthorhombic intermediate phases.  相似文献   

14.
The layered LiNi0.5Mn0.47Al0.03O2 was synthesized by wet chemical method and characterized by X-ray diffraction and analysis of magnetic measurements. The powders adopted the α-NaFeO2 structure. This substitution of Al for Mn promotes the formation of Li(Ni0.472+Ni0.033+Mn0.474+Al0.033+)O2 structures and induces an increase in the average oxidation state of Ni, thereby leading to the shrinkage of the lattice unit cell. The concentration of antisite defects in which Ni2+ occupies the (3a) Li lattice sites in the Wyckoff notation has been estimated from the ferromagnetic Ni2+(3a)–Mn4+(3b) pairing observed below 140 K. The substitution of 3% Al for Mn reduces the amount of antisite defects from 7% to 6.4–6.5%. The analysis of the magnetic properties in the paramagnetic phase in the framework of the Curie–Weiss law agrees well with the combination of Ni2+ (S = 1), Ni3+ (S = 1/2) and Mn4+ (S = 3/2) spin-only values. Delithiation has been made by the use of K2S2O8. According to this process, known to be softer than the electrochemical one, the nickel ions in the (3b) sites are converted into Ni4+ in the high spin configuration, while Ni2+(3a)–Mn4+(3b) ferromagnetic pairs remain, as the Li+(3b) ions linked to the Ni2+(3a) ions in the antisite defects are not removed. The results show that the antisite defect is surrounded by Mn4+ ions, implying the nonuniform distribution of the cations in agreement with previous NMR and neutron experiments.  相似文献   

15.
The electrical properties of a lithium heptagermanate (Li2Ge7O15) crystal have been studied in DC and AC measuring fields at temperatures from 500 to 700 K. In a DC field, a substantial decrease of electrical conductivity σ with time has been detected. On the basis of kinetic dependences σ(t), estimates of the charge carrier diffusion coefficient D have been obtained. In the frequency range 101–105 Hz, the spectra of complex impedance ρ*(f) have been measured. The analysis of diagrams in the complex plane (ρ″–ρ′) has been performed within the equivalent circuit approach. It has been shown that, in the considered temperature and frequency intervals, the electrical properties of Li2Ge7O15 crystals have been determined by the hopping conduction of interstitial lithium ions A Li and accumulation of charge carriers near the blocking Pt electrodes.  相似文献   

16.
The temperature dependences of the electrical conductivity and the permittivity of TlInSe2 and TlGaTe2 crystals unirradiated and irradiated with 4-MeV electrons at a doze of 1016 cm−2 have been investigated. It has been established that electron irradiation leads to a decrease in the electrical conductivity σ and the permittivity ɛ over the entire temperature range under study (90–320 K). It has been revealed that the TlInSe2 and TlGaTe2 single crystals undergo a sequence of phase transitions characteristic of crystals of this type, which manifest themselves as anomalies in the temperature dependences σ = f(T) and ɛ = f(T). Electron irradiation at a doze of 1016 cm−2 does not affect the phase transition temperatures of the crystals under investigation.  相似文献   

17.
The conductivity of poly(N-vinylimidazole) (PVIM) and its fluoroborate salt (PVIM–HBF4) are reported here. N-vinylimidazole is polymerized by free radical method and PVIM–HBF4 is prepared by acidification of PVIM with HBF4. The polyelectrolyte so formed has been characterized by infrared, hydrogen-1 nuclear magnetic resonance, thermogravimetric analyzer, and differential scanning calorimetry. Frequency and temperature dependence of AC conductivity has been studied to learn about the electrical conduction behavior in the materials. The electrical conductivity of the new material is found to be in the range of 10−5 to 10−6 S cm−1.There is about 102- to 103-fold increase in conductivity of the polyelectrolyte. The material is shown to be a predominantly ionic conductor with t ion ≈ 0.88. Apparent activation energies are found to be 0.397 and 0.250 eV for the polymer and the polyelectrolyte, respectively.  相似文献   

18.
Preparing spherical particles with carbon additive is considered as one effective way to improve both high rate performance and tap density of Li4Ti5O12 and LiFePO4 materials. Spherical Li4Ti5O12/C and LiFePO4/C composites are prepared by spray-drying–solid-state reaction method and controlled crystallization–carbothermal reduction method, respectively. The X-ray diffraction characterization, scanning electron microscope, Brunauer–Emmett–Teller, alternating current impedance analyzing, tap density testing, and electrochemical property measurements are investigated. After hybridizing carbon with a proper quantity, the crystal grain size of active materials is remarkably decreased and the electrochemical properties are obviously improved. The Li4Ti5O12/C and LiFePO4/C composites prepared in this work are spherical. The tap density and the specific surface area are as high as 1.71 g cm−3 and 8.26 m2 g−1 for spherical Li4Ti5O12/C, which are 1.35 g cm−3 and 18.86 m2 g−1 for spherical LiFePO4/C powders. Between 1.0 and 3.0 V versus Li, the reversible specific capacity of the Li4Ti5O12/C is more than 150 mAh g−1 at 1.0-C rate. Between 2.5 and 4.2 V versus Li, the reversible capacity of the LiFePO4/C is close to 140 mAh g−1 at 1.0-C rate.  相似文献   

19.
Optical absorption spectra of trigonal crystal TbFe3(BO3)4 have been studied in the region of 7F65D4 transition in Tb3+ ion depending on temperature (2–220 K) and on magnetic field (0–60 kOe). Splitting of the Tb3+ excited states, both under the influence of the external magnetic field and effective exchange field of the Fe-sublattice, have been determined. Landé factors of the excited states have been found. Stepwise splitting of one of the absorption lines has been discovered in the region of the Fe-sublattice magnetic ordering temperature. This is shown to be due to the abrupt change of equilibrium geometry of the local Tb3+ ion environment only in the excited state of the Tb3+ ion. In general, the magnetic ordering is accompanied by temperature variations of the Tb3+ local environment in the excited states. The crystal field splitting components have been identified. In particular, it has been shown that the ground state (in D 3 symmetry approximation) consists of two close singlet states of A 1 and A 2 type, which are split and magnetized by effective exchange field of the Fe-sublattice. Orientations of magnetic moments of the excited electronic states relative to that of the ground state have been experimentally determined in the magnetically ordered state of the crystal. A pronounced shift of one of absorption lines has been observed in the vicinity of the TbFe3(BO3)4 structural phase transition. The temperature interval of coexistence of the phases is about 3 K.  相似文献   

20.
Variable chain length di-urethane cross-linked poly(oxyethylene) (POE)/siloxane hybrid networks were prepared by application of a sol-gel strategy. These materials, designated as di-urethanesils (represented as d-Ut(Y′), where Y′ indicates the average molecular weight of the polymer segment), were doped with lithium triflate (LiCF3SO3). The two host hybrid matrices used, d-Ut(300) and d-Ut(600), incorporate POE chains with approximately 6 and 13 (OCH2CH2) repeat units, respectively. All the samples studied, with compositions ∞ > n ≥ 1 (where n is the molar ratio of (OCH2CH2) repeat units per Li+), are entirely amorphous. The di-urethanesils are thermally stable up to at least 200 °C. At room temperature the conductivity maxima of the d-Ut(300)- and d-Ut(600)-based di-urethanesil families are located at n = 1 (approximately 2.0 × 10−6 and 7.4 × 10−5 Scm−1, respectively). At about 100 °C, both these samples also exhibit the highest conductivity of the two electrolyte systems (approximately 1.6 × 10−4 and 1.0 × 10−3 Scm−1, respectively). The d-Ut(600)-based xerogel with n = 1 displays excellent redox stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号