首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study relates to the numerical simulation of the free surface during the two-dimensional flow and solidification of aluminum in the horizontal cylinder and mold cavity of the high pressure die casting HPDC machine with cold chamber. The flow is governed by the Navier–Stokes equations (the mass and the momentum conservations) and solved in the two phase’s liquid aluminum and air. The tracking of the free surface is ensured by the VOF method. The equivalent specific heat method is used to solve the phase change heat transfer problem in the solidification process. Considering the displacement of the plunger, the geometry of the problem is variable and the numerical resolution uses a dynamic grid. The study examines the influence of the plunger speed on the evolution of the interface aluminum liquid–air profile, the mass of air imprisoned and the stream function contours versus time. Filling of a mold is an essential part of HPDC process and affects significantly the heat transfer and solidification of the melt. For this reason, accurate prediction of the temperature field in the system can be achieved only by including simulation of filling in the analysis.  相似文献   

2.
The interfacial heat transfer coefficient (IHTC) is necessary for accurate simulation of the casting process. In this study, a cylindrical geometry is selected for the determination of the IHTC between aluminum alloy casting and the surrounding sand mold. The mold surface heat flux and temperature are estimated by two inverse heat conduction techniques, namely Beck’s algorithm and control volume technique. The instantaneous cast and mold temperatures are measured experimentally and these values are used in the theoretical investigations. In the control volume technique, partial differential heat conduction equation is reduced to ordinary differential equations in time, which are then solved sequentially. In Beck’s method, solution algorithm is developed under the function specification method to solve the inverse heat conduction equations. The IHTC was determined from the surface heat flux and the mold surface temperature by both the techniques and the results are compared.  相似文献   

3.
In this paper, a numerical investigation is performed for three-stage heat exchangers with plain plate fins and slit fins respectively, with a three-dimensional laminar conjugated model. The tubes are arranged in a staggered way, and heat conduction in fins is considered. In order to save the computer resource and speed up the numerical simulation, the numerical modeling is carried out stage by stage. In order to avoid the large pressure drop penalty in enhancing heat transfer, a slit fin is presented with the strip arrangement of “front coarse and rear dense” along the flow direction. The numerical simulation shows that, compared to the plain plate fin heat exchanger, the increase in the heat transfer in the slit fin heat exchanger is higher than that of the pressure drop, which proves the excellent performance of this slit fin. The fluid flow and heat transfer performance along the stages is also provided.  相似文献   

4.
Based on finite difference and control-volume scheme, a model was developed to simulate fluid flow in forced convection and heat transfer in pressurized solidification of a cylindrical squeeze casting of magnesium alloy AM50. Pressure-dependent heat transfer coefficients (HTC) and non-equilibrium solidification temperatures were determined by experimental measurements. With the measured HTC and temperatures under the different pressures, the temperature distributions and the cooling behaviors of squeeze cast were simulated.  相似文献   

5.
Studied in this paper is simultaneous transfer of heat and water vapor which takes place in a green sand mold in a very short period of time after pouring a molten metal in its cavity. Governing equations describing heat and mass transfer in a mold are solved by finite difference method and the results are compared with the actually measured values to examine the validity of the calculated results. The effect of thermal properties and permeability of the mold, the amount of water contained, the heating temperature (i.e., temperature of casting metal) and other factors on the heat transfer rate at the interface between the molten metal and the mold, the pressure rise in the mold and the development of dried zone around the casting are investigated to propose some empirical relations available for predicting those transfer phenomena by using dimensionless parameters presented.  相似文献   

6.
 The microporosity formation in a vertical unidirectionally solidifying Al–4.1%Cu alloy casting is modeled in both microgravity and standard gravity as well as in the conditions of decreased (Moon, Mars) and increased (Jupiter) gravity. Due to the unique opportunities offered by a low-gravity environment (absence of metallostatic pressure and of natural convection in the solidifying alloy) future microgravity experiments will significantly contribute to attaining a better physical understanding of the mechanisms of microporosity formation. One of the aims of the present theoretical investigation is to predict what microporosity patterns will look like in microgravity in order to help plan a future microgravity experiment. To perform these simulations, the authors suggest a novel three-phase model of solidification that accounts for the solid, liquid, and gas phases in the mushy zone. This model accounts for heat transfer, fluid flow, macrosegregation, and microporosity formation in the solidifying alloy. Special attention is given to the investigation of the influence of microporosity formation on the inverse segregation. Parametric analyses for different initial hydrogen concentrations and different gravity conditions are carried out. Received on 14 April 2000  相似文献   

7.
This investigation explores the mass/heat transfer from a wall-mounted block in a rectangular fully developed channel flow. The naphthalene sublimation scheme was used to measure the level of local mass transfer from the block’s surfaces. The heat transfer coefficient can be obtained by analogy between heat and mass transfer. The effects of the Reynolds number on the local mass transfer from the block’s surfaces have been widely discussed. Results showed that, owing to the flow complexity induced by vortices around the block, the block’s surfaces appeared four different spatial Sherwood number distributions, termed “Wave type”, “U type”, “Slant type”, and “Pit type”. A change in the Reynolds number significantly altered the spatial Sherwood number distributions on the block’s surfaces. Besides, four correlations between the Reynolds number and the surface-averaged Sherwood number were presented for the front, top, side, and rear surfaces of the block at a given block’s height, for the purpose of practical applications.  相似文献   

8.
 Interfacial mass transfer mechanisms played an essential role to the high heat transfer efficiency noted for nucleate boiling. There existed a zone around the bubble surface that exhibited zero net mass flux, termed herein as the “zero-flux zone”. This work investigated analytically the interfacial vaporization and condensation processes around a boiling bubble, based on which the positional dependence of zero-flux zone was derived. For a stationary bubble the zero-flux zone shifted to the upper hemisphere with decreasing wall superheat and/or with increasing contact angle. Moreover, the bubble growth (shrinkage) largely enhanced (retarded) such a trend. At the extreme condition where the bubble grew at a very fast speed the entire bubble surface would be subject to liquid evaporation only. Experiments observed a “thermal jet” emerging from the bubble cap, which was attributed to the interfacial vapor condensation flux at the bubble cap. Received on 11 December 2000 / Published online: 29 November 2001  相似文献   

9.
The flow in a laminar boundary layer for an arbitrary periodic main stream is considered at high frequencies when the fluid is incompressible. The analysis, incorporating length scales appropriate to the thin “Stokes” layer immediately adjacent to the surface and to the outer “Prandtl” boundary layer, involves expressing the dependent variables as mean parts plus superimposed periodic parts and expanding these in inverse powers of the frequency parameter in the two layers. Thus earlier approaches based on physical arguments are placed in the context of a systematic mathematical expansion scheme which is itself formulated for more general main stream velocities than hitherto. Expressions for skin friction and heat transfer are obtained and briefly discussed.  相似文献   

10.
The interfacial heat transfer coefficient (IHTC) is required for the accurate simulation of heat transfer in castings especially for near net-shape processes. The large number of factors influencing heat transfer renders quantification by theoretical means a challenge. Likewise experimental methods applied directly to temperature data collected from castings are also a challenge to interpret because of the transient nature of many casting processes. Inverse methods offer a solution and have been applied successfully to predict the IHTC in many cases. However, most inverse approaches thus far focus on use of in-mold temperature data, which may be a challenge to obtain in cases where the molds are water-cooled. Methods based on temperature data from the casting have the potential to be used however; the latent heat released during the solidification of the molten metal complicates the associated IHTC calculations. Furthermore, there are limits on the maximum distance the thermocouples can be placed from the interface under analysis. An inverse conduction based method have been developed, verified and applied successfully to temperature data collected from within an aluminum casting in proximity to the mold. A modified specific heat method was used to account for latent heat evolution in which the rate of change of fraction solid with temperature was held constant. An analysis conducted with the inverse model suggests that the thermocouples must be placed no more than 2 mm from the interface. The IHTC values calculated for an aluminum alloy casting were shown to vary from 1,200 to 6,200 Wm?2 K?1. Additionally, the characteristics of the time-varying IHTC have also been discussed.  相似文献   

11.
The objective of this paper is to investigate sensitivity of the macrosegregation profiles in steel strips produced by the horizontal strip casting process to the major technological parameters controlling this process, such as the cooling rate and the casting speed. To perform this investigation, a mathematical model which accounts for fluid flow as well as for heat and solute transport is suggested. Extensive numerical simulations of the horizontal strip casting process for different cooling rates and different casting speeds are carried out. Received on 17 September 1998  相似文献   

12.
The present paper deals with the prediction of three-dimensional fluid flow and heat transfer in rib-roughened ducts of square cross-section, which are either stationary, or rotate in orthogonal mode. The main objective is to assess how a recently developed variant of a cubic non-linear kε model (proposed by Craft et al. Flow Turbul Combust 63:59–80, 1999) can predict three-dimensional flow and heat transfer characteristics through stationary and rotating ribbed ducts. The present paper discusses turbulent air flow and heat transfer through two different configurations, namely: (I) a stationary square duct with “in-line” normal and (II) a square duct with normal ribs in a “staggered” arrangement under stationary and rotating conditions, with the axis of rotation normal to the flow direction and parallel to the ribs. In this paper the flow and thermal predictions of the linear kε model (EVM) are also included, as a set of baseline predictions. The mean flow predictions show that both linear and non-linear kε models can successfully reproduce most of the measured data for stream-wise and cross-stream velocity components. Moreover, the non-linear model is able to produce better results for the turbulent stresses. The heat transfer predictions show that both EVM and NLEVM2, the more recent variant of the non-linear kε, with the algebraic length-scale correction term, overestimate the measured Nusselt numbers for both geometries examined. While the EVM with the differential length-scale correction term underestimates heat transfer levels, the Nusselt number predictions with the NLEVM2 and the ‘NYP’ term are in close agreements with the measured data. Comparisons with our earlier work, Iacovides and Raisee (Int J Heat Fluid Flow, 20:320–328, 1999), show that the NLEVM2 thermal predictions are of similar quality to those of a second-moment closure.  相似文献   

13.
Laminar thermosolutal convection in cavities with uniform, constant temperature and mass fraction profiles at the vertical side is studied numerically. The study is conducted in the case where an inert carrier gas (species “1”) present in the cavity is not soluble in species “2”, and do not diffuse into the walls. A mass flux of species “2” into the cavity occurs at the hot vertical wall and a mass flux out of the cavity occurs at the opposite cold wall. The weakly compressible model proposed in this work was used to investigate the flow fields, and heat and mass transfer in cavities filled with binary mixtures of ideal gases. The dimensionless form of the seven governing equations for constant thermophysical properties, except density, show that the problem formulation involves ten dimensionless parameters. The results were validated against numerical results published in the literature for purely thermal convection, and thermodynamic predictions for transient thermosolutal flows. A parametric study has been performed to investigate the effects of the initial conditions, molecular weight ratio, Lewis number, and aspect ratio of the cavity for aiding or opposing buoyancy forces. For the range of parameters considered, the results show that variations in the density field have larger effects on mass transfer than on heat transfer. For opposing buoyancy forces, the numerical simulations predict complex flow structures and possible chaotic behavior for rectangular vertical cavities according to the value of the molecular weight ratio.  相似文献   

14.
This paper reports the use of the technique of combining asymptotics with computational fluid dynamics (CFD), known as asymptotic computational fluid dynamics (ACFD), to handle the problem of combined laminar mixed convection and surface radiation from a two dimensional, differentially heated lid driven cavity. The fluid under consideration is air, which is radiatively transparent, and all the walls are assumed to be gray and diffuse and having the same hemispherical, total emissivity (ɛ). The computations have been performed on FLUENT 6.2. The full radiation problem (i.e. all the walls are radiatively black corresponding to ɛ = 1) is first taken up and the method of “perturbing and blending” is used wherein, first, limiting solutions of natural and forced convection are perturbed, to obtain correlations for the weighted average convective Nusselt numbers for the full radiation case. These correlations are then blended suitably in order to obtain a composite correlation for the weighted average convective Nusselt number that is valid for the entire mixed convection range, i.e., 0 ≤ Ri ≤ ∞. This correlation is then expanded in terms of ɛ to obtain an expression for the average convective Nusselt number that is valid for any ɛ in the range 0 ≤ ɛ ≤ 1. In so far as radiation heat transfer is concerned, using asymptotic arguments, a new weighted average radiation Nusselt number is defined such that this quantity can be expanded just in terms of ɛ. Hence, by the use of ACFD, the number of solutions required to obtain reasonably accurate correlations for both the convective and radiative heat transfer rates and hence the total heat transfer rate (Nu total = Nu C + Nu R), is substantially reduced. More importantly, the correlations for convection and radiation are asymptotically correct at their ends. The effect of secondary variables like aspect ratio and the case of unequal wall emissivities can also be included without significant additional effort.  相似文献   

15.
Modeling heat transfer and fluid flow in materials with complicated micro-structures is a major challenge to numerical methods due to their multiscale and multiphysics nature. A relatively novel numerical technique—the meshless smoothed particle hydrodynamics (SPH) method has the potential of making a significant contribution to this research field. In the present SPH modeling effort, a 2D modeling system is devised for the prediction of the effective thermal conductivity in heterogeneous materials containing two or three different components. The microscopic component configuration inside the materials is constructed in the SPH methodology by randomly assigning particles as a certain component to meet the required macroscopic composition. For heterogeneous two-component materials, the effective thermal conductivity predicted by the modified effective medium theory model with the so-called “flexible” factor f equal to 4.5 agrees well with the SPH data. On the basis of a simple “step-process” concept, the effective thermal conductivity of a heterogeneous multi-component material can be derived from the corresponding “degenerate” materials which consist of fewer components.  相似文献   

16.
Fluidized Carbon Bed Cooling (FCBC) is an innovative investment casting process for directional solidification of superalloy components. It takes advantage of a fluidized bed with a base of small glassy carbon beads for cooling and other low-density particles that form an insulating layer by floating to the bed surface. This so-called “Dynamic Baffle” protects the fluidized bed from the direct heat input from the high-temperature heating zone and provides the basis for an improved bed microstructure. The prerequisites for a stable casting process are stable fluidization conditions where neither collapse of the bed nor particle blow out at excessive bubble formation occur.This work aimed to investigate the fluidization behavior of spherical carbon bed material in argon and air at temperatures between 20 to 350 °C. Systematic studies at reduced pressures using the FCBC prototype device were performed to understand the stable fluidization conditions at all stages of the investment casting process. The particle shape factor and size distribution characterization and the measurement of the powder’s minimum fluidization velocity and bed voidage show that this material can be fully utilized as a cooling and buoyancy medium during the FCBC process.  相似文献   

17.
Experimental and numerical studies of natural convection in a single phase, closed thermosyphon were carried out using a vertical, rectangular enclosure model. Only one vertical plate plays the role of heat transfer surface having 100 mm height and 100 mm width, and others act as the adiabatic wall made of transparent plexi-glass. The heat transfer surface is separated into three horizontal zones with an equal height; top 1/3 and bottom 1/3 of the surface are cooling and heating zones, respectively and intermediate section is an adiabatic zone. Water is used as the working fluid. Variable parameters are distance D between the heat transfer surface and an adiabatic plate opposite to the heat transfer plate, and temperature difference ΔT between heating and cooling zones. By changing both D and ΔT, three regimes of the natural convection flow; quasi-two-dimensional steady, three-dimensional steady and unsteady flows are observed by means of thermo-sensitive liquid crystal powder and numerically simulated very well by solving a set of governing equations. Received on 17 January 2000  相似文献   

18.
A single domain enthalpy control volume method is developed for solving the coupled fluid flow and heat transfer with solidification problem arising from the continuous casting process. The governing equations consist of the continuity equation, the Navier–Stokes equations and the convection–diffusion equation. The formulation of the method is cast into the framework of the Petrov–Galerkin finite element method with a step test function across the control volume and locally constant approximation to the fluxes of heat and fluid. The use of the step test function and the constant flux approximation leads to the derivation of the exponential interpolating functions for the velocity and temperature fields within each control volume. The exponential fitting makes it possible to capture the sharp boundary layers around the solidification front. The method is then applied to investigate the effect of various casting parameters on the solidification profile and flow pattern of fluids in the casting process.  相似文献   

19.
20.
The quality of the half products is conditioned by the conditions of cooling of molten steel during its transfer through the various exchangers and in particular the mold. The latter constitutes the first phase where molten steel starts to be solidified. The instantaneous solidified crust must be sufficiently thick to contain liquid steel and to avoid the phenomena of opening under the effect of the ferrostatic pressure. Among the recurring concerns of the steel industry is the appearance of the mastery of content inclusions in metallic alloys. Despite the dramatic increase in the cleanliness of steel, it still happens now that macro-inclusions (accidental) are found in the metal. The objective of this work is to demonstrate the influence of the nozzle geometrical modification of the flow structure and the behavior of the particles in the mold of the casting machine. The obtained results show the advantage of an inclined nozzle because it makes it possible to widen the recirculation zone what supports the increase in the residence time of the particles on the one hand and the formation of a solidified crust sufficient thick on the other hand. Numerical tests of the particles behavior (Al2O3) showed the advantage of using the geometric shapes of well designed nozzles. Due to symmetry, only half of the area is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号