首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cysteine protease from grapevine (Vitis vinifera) belongs to those resistant proteins, which survive the process of vinification and can therefore be detected as wine components. Its amino acid sequence shows a homology to other members of the papain family, but the enzyme has only partially been explored so far. In order to get more biochemical information with the help of mass spectrometry (MS), wine proteins were collected by ultrafiltration and separated by gel permeation chromatography. The purified enzyme surprisingly displayed a high molecular mass value of around 200 kDa, indicating a possible oligomeric status and aggregation, as it entered only negligibly the separating 10% gel during polyacrylamide gel electrophoresis. The isoelectric point (pI) value of 3.6 was determined by chromatofocusing. Matrix‐assisted laser desorption/ionization (MALDI)‐MS was employed to evaluate the cleavage specificity and usefulness of the isolated cysteine protease in protein and peptide research. A potential applicability could be anticipated from the efficient digestion performance in volatile ammonium formate buffers at pH 3. Common peptides were digested and the resulting products analyzed by MS/MS sequencing. Then, mixtures of protein standards and extracted barley nuclear proteins were processed in the same way. Grape cysteine protease is nonspecific but shows a certain preference for Arg, Lys, and also Leu residues. Compared with papain, it seems not to require fully the presence of a large hydrophobic residue adjacent to that at the cleavage site. The enzyme is suitable for protein research as it produces peptides of a reasonable length in acidic pH.  相似文献   

2.
Tandem mass spectrometry (MS/MS) is an attractive technique for sequencing membrane proteins because it can be applied to peptides in mixtures that are difficult to separate chromatographically. To evaluate the suitability of MS/MS sequencing for membrane proteins and to develop protocols for the preparation of the cleaved peptides, we employed the well characterized apoproteins of bacteriorhodopsin and bovine rhodopsin, i.e. bacterioopsin and opsin, respectively. Without separation, nine out of ten peptides resulting from cyanogen bromide cleavage of bacterioopsin were detected by fast atom bombardment MS, the single undetected fragment being a tetrapeptide that was presumably hidden in the low-m/z matrix background. Furthermore, MS/MS was used to confirm the sequence of all the peptides detected with m/z values below 3.5 kDa (40% of the protein). Bovine opsin was analyzed in a similar fashion. Tandem MS/MS has thus allowed the sequencing of substantial portions of two integral membrane proteins by the analysis of unseparated peptide mixtures, demonstrating for the first time that this technique can obviate some of the most serious difficulties associated with sequencing membrane proteins, namely the difficult-to-achieve separation of the ‘sticky’ peptide fragments.  相似文献   

3.
Vitamin K-dependent carboxylation of glutamic acid (Glu) residues into γ-carboxyglutamic acid (Gla) is a post-translational modification essential for normal protein activity of, for example, proteins involved in the blood coagulation system. These proteins may contain as many as 12 sites for γ-carboxylation within a protein sequence of 45 amino acid residues. In the biopharmaceutical industry, powerful analytical techniques are required for identification and localization of modified sites. We here present comparatively easy and rapid methods for studies of Gla-containing proteins using recent technology. The performances of two mass spectrometric fragmentation techniques, collision-induced dissociation (CID) and electron transfer dissociation (ETD), were evaluated with respect to γ-carboxylated peptides, applying on-line LC-ion trap MS. ETD MS has so far not been reported for Gla-containing peptides and the applicability of CID for heavily γ-carboxylated proteins has not been evaluated. The anticoagulant protein, protein C, containing nine Gla-sites, was chosen as a model protein. After tryptic digestion, three peptides containing Gla-residues were detected by MS; a 1.2 kDa fragment containing two Gla-residues, a 4.5 kDa peptide containing seven residues and also the 5.6 kDa tryptic peptides containing all nine Gla-residues. Regarding the shortest peptide, both CID and ETD provided extensive peptide sequencing. For the larger peptides, fragmentation by CID resulted in loss of the 44 Da CO(2)-group, while little additional fragmentation of the peptide chain was observed. In contrast, ETD resulted in comprehensive fragmentation of the peptide backbone. The study demonstrates that the combination of both techniques would be beneficial and complementary for investigation of γ-carboxylated proteins and peptides.  相似文献   

4.
An overview on the utilization of monoliths in proteomics technology will be given. Both silica- and polymer-based monoliths have broad use for microseparation of tryptic peptides in reversed-phase (RP) mode before identification by mass spectrometry (MS) or by MS/MS. For two-dimensional (2D) LC separation of peptides before MS or MS/MS analysis, a combination of ion-exchange, usually cation-exchange (CEX) chromatography with RP chromatography on monolithic supports can be employed. Immobilized metal ion affinity chromatography monoliths with immobilized Fe3+-ions are used for the isolation of phosphopeptides. Monoliths with immobilized affinity ligands are usually applied to the rapid separation of proteins and peptides. Miniaturized reactors with immobilized proteolytic enzymes are utilized for rapid on- or offline digestion of isolated proteins or protein mixtures prior to identification by LC-MS/MS. Monoliths also have broad potential for application in sample preparation, prior to further proteomic analyses. Monolithic supports with large pore sizes can be exploited for the isolation of nanoparticles, such as cells, organelles, viruses and protein aggregates. The potential for further adoption of monolithic supports in protein separation and enrichment of low abundance proteins prior to proteolytic digestion and final LC-MS/MS protein identification will be discussed.  相似文献   

5.
Simple and efficient digestion of proteins, particularly hydrophobic membrane proteins, is of significance for comprehensive proteome analysis using the bottom-up approach. We report a microwave-assisted acid hydrolysis (MAAH) method for rapid protein degradation for peptide mass mapping and tandem mass spectrometric analysis of peptides for protein identification. It uses 25% trifluoroacetic acid (TFA) aqueous solution to dissolve or suspend proteins, followed by microwave irradiation for 10 min. This detergent-free method generates peptide mixtures that can be directly analyzed by liquid chromatography (LC) matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) without the need of extensive sample cleanup. LC-MALDI MS/MS analysis of the hydrolysate from 5 microg of a model transmembrane protein, bacteriorhodopsin, resulted in almost complete sequence coverage by the peptides detected, including the identification of two posttranslational modification sites. Cleavage of peptide bonds inside all seven transmembrane domains took place, generating peptides of sizes amenable to MS/MS to determine possible sequence errors or modifications within these domains. Cleavage specificity, such as glycine residue cleavage, was observed. Terminal peptides were found to be present in relatively high abundance in the hydrolysate, particularly when low concentrations of proteins were used for MAAH. It was shown that these peptides could still be detected from MAAH of bacteriorhodopsin at a protein concentration of 1 ng/microl or 37 fmol/microl. To evaluate the general applicability of this method, it was applied to identify proteins from a membrane protein enriched fraction of cell lysates of human breast cancer cell line MCF7. With one-dimensional LC-MALDI MS/MS, a total of 119 proteins, including 41 membrane-associated or membrane proteins containing one to 12 transmembrane domains, were identified by MS/MS database searching based on matches of at least two peptides to a protein.  相似文献   

6.
K Ou  T K Seow  R C Liang  S E Ong  M C Chung 《Electrophoresis》2001,22(13):2804-2811
Recently, we reported the proteome analysis of a human hepatocellular carcinoma cell line, HCC-M (Electrophoresis 2000, 21, 1787-1813), using two-dimensional gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). From a total of 408 unique spots excised from the 2-DE gel, 301 spots yielded good MALDI spectra. Out of these, 272 spots had matches returned from the database search leading to the identification of these proteins. Here, we report the results on the identification of the remaining 29 spots using nanoelectrospray ionization-tandem mass spectrometry (nESI-MS/MS). First, "peptide tag sequencing" was performed to obtain partial amino acid sequences of the peptides to search the SWISS-PROTand NCBI nonredundant protein databases. Spots that were still not able to find any matches from the databases were subjected to de novo peptide sequencing. The tryptic peptide sequences were used to search for homologues in the protein and nucleotide databases with the NCBI Basic Local Alignment Search Tool (BLAST), which was essential for the characterization of novel or post-translationally modified proteins. Using this approach, all the 29 spots were unambiguously identified. Among them, phosphotyrosyl phosphatase activator (PTPA), RNA-binding protein regulatory subunit, replication protein A 32 kDa subunit (RP-A) and N-acetylneuraminic acid phosphate synthase were reported to be cancer-related proteins.  相似文献   

7.
Human acquired enamel pellicle is the result of a selective interaction of salivary proteins and peptides with the tooth surface. In the present work, the characterization of the peptides as well as the type of interactions established with the enamel surface was performed. Peptides from in vivo bovine enamel implants in the human oral cavity were sequentially extracted using guanidine and trifluoroacetic acid solutions and the fractions obtained were analysed by LC-MS and LC-MS/MS. Based on the LC-MS data, six phosphorylated peptides were identified in an intact form, strongly adsorbed to the enamel surface. Data from the LC-MS/MS analyses allowed us to identified 30 fragment peptides non-covalently bonded to enamel [basic proline-rich proteins, histatins (1 and 3) and acidic proline-rich protein classes]. The tandem mass spectrometry experiments showed the existence of a pattern of amide bond cleavage for the different identified peptide classes suggesting a selective proteolytic activity. For histatins, a predominance of cleavage at Arg, Lys and His residues was observed, while for basic proline-rich proteins, cleavage at Arg and Pro residues prevailed. In the case of acidic proline-rich proteins, a clearly predominance of cleavage of the Gln-Gly amide bond was evident.  相似文献   

8.
The effects of oxidative stress on the yeast proteome were studied using hydrogen peroxide as the stress agent. Oxidized proteins were isolated by (1) biotinylation of oxidized proteins with biotin hydrazide, (2) affinity selection using monomeric avidin affinity chromatography, and (3) further fractionated by reversed-phase liquid chromatography (RPLC) on a C(8) column. Oxidized protein fractions from RPLC were then trypsin digested and the peptide cleavage fragments identified by tandem mass spectrometry (MS/MS). Slightly over 400 proteins were identified. Sites of carbonyl formation were found in roughly one fourth of these proteins. Oxidation on other amino acids in carbonylated peptides was seen in 32 cases while carbonylation was absent in 96 of the oxidized proteins observed. Although there are large numbers of potential oxidation sites, oxidation seemed to be restricted to a small area in most of the proteins identified. Sometimes multiple amino acids in the same tryptic peptide were oxidized. A second trend was that more than 8% of the proteins identified appeared in more than one of the RPLC fractions. Based on the position of the peptides identified in the primary structure of protein candidates derived from databases it was concluded that this occurred by fragmentation of a parent protein. It is not clear from the data whether the fragmentation process was of enzymatic or oxidative origin. Finally, peptides from two or more proteins occurred together in more than one reversed phase fraction with 2% of the proteins identified. This data was interpreted to mean that this was the result of protein cross-linking.  相似文献   

9.
C端测序是蛋白质及多肽一级结构确认的重要组成部分,也是重组蛋白药物质量控制的重要依据。建立了溴化氰裂解结合电喷雾串联质谱测定蛋白质C端序列的方法,并应用于重组人肿瘤坏死因子受体和纽兰格林的C端测序。首先根据待测蛋白序列进行溴化氰理论裂解,如果C-端肽段理论分子量在500~5000U之间,则将待测样品进行SDS-PAGE分离,考马斯亮兰染色,然后进行胶内溴化氰裂解,最后应用基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF-MS)测定C-端肽段的分子量,电喷雾串联质谱对C端肽段进行测序。应用本方法分别测定了这两个蛋白质C端19个和11个氨基酸残基序列。研究结果表明:本方法灵敏、有效、实用性较强,可适用于部分重组蛋白药物的质量控制和蛋白质的结构确证,是对目前蛋白质C端测序方法的有效补充。  相似文献   

10.
The milk of the one‐humped camel (Camelus dromedarius) reportedly offers medicinal benefits, perhaps because of its unique bioactive components. Milk proteins were determined by (1) two‐dimensional gel electrophoresis and peptide mass mapping and (2) liquid chromatography–tandem mass spectrometry (LC–MS/MS) following one‐dimensional polyacrylamide gel electrophoresis. Over 200 proteins were identified: some known camel proteins including heavy‐chain immunoglobulins and others exhibiting regions of exact homology with proteins from other species. Indigenous peptides were also identified following isolation and concentration by two strategies: (1) gel‐eluted liquid fraction entrapment electrophoresis and (2) small‐scale electrophoretic separation. Extracts were analyzed by LC–MS/MS and peptides identified by matching strategies, by de novo sequencing and by applying a sequence tag tool requiring similarity to the proposed sequence, but not an exact match. A plethora of protein cleavage products including some novel peptides were characterized. These studies demonstrate that camel milk is a rich source of peptides, some of which may serve as nutraceuticals. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A monoquaternarized piperazine, 1-(4-iodobutyl) 4-aza-1-azoniabicyclo[2,2,2] octane iodide (M7C4I), has been evaluated as a surface derivatization reagent for CE in combination with TOF MS for the analysis of proteins, peptides, and protein digests. The M7C4I piperazine, at alkaline pH, forms a covalent bond via alkylation of the ionized silanols producing a cationic surface with a highly stable and reversed EOF. The obtained surface yields rapid separations (less than 5 min) of peptides and proteins at acidic pH with high separation efficiencies (up to 1.1 x 10(6) plates/m for peptides and up to 1.8 x 10(6) plates/m for proteins) and no observed bleeding of the coating reagent into the mass spectrometer. The simplicity of the coating procedure also enables fast (2 min) regeneration of the surface, if necessary. This is useful in the analysis of complex samples in order to prevent possible memory effects. The potential of using M7C4I-coated capillaries for MS analysis of complex samples is demonstrated by the separation of peptides, proteins, and protein digests. Even more, the spectacular thing in which large intact proteins with molecular masses over 0.5 MDa could be separated. The coating showed good ability to handle these large proteins with high efficiency and retained peak shape as demonstrated by separation of IgG(1) (150 kDa) and thyroglobulin (669 kDa).  相似文献   

12.
Peptide profile of human acquired enamel pellicle using MALDI tandem MS   总被引:2,自引:0,他引:2  
The present study proposes a strategy for human in vivo acquired enamel pellicle (AEP) peptidome characterisation based on sequential extraction with guanidine and TFA followed by MALDI-TOF/TOF identification. Three different nanoscale analytical approaches were used: samples were subjected to tryptic digestion followed by nano-HPLC and mass spectrometry (MS and MS/MS) analysis. Undigested samples were analysed by LC-MS (both linear and reflector modes) and LC-MS/MS analysis, and samples were subjected to nano-HPLC followed by on-plate digestion and mass spectrometry (MS and MS/MS) analysis. The majority of the identifications corresponded to peptide/protein fragments of salivary protein, belonging to the classes: acidic PRPs, basic PRPs, statherin, cystatins S and SN and histatin 1 (all also identified in intact form). Overall, more than 90 peptides/proteins were identified. Results clearly show that peptides with acidic groups are enriched in the TFA fraction while peptides with no acidic or phosphate groups are prevalent on the guanidine extract. Also, phosphorylated peptides were observed mainly on the TFA fraction. Fragments present in the AEP show a predominance of cleavage points located at Arg, Tyr and Lys residues. Obtained data suggest that proteolytic activity could influence AEP formation and composition.  相似文献   

13.
We have constructed an electrospray-assisted laser desorption/ionization (ELDI) source which utilizes a nitrogen laser pulse to desorb intact molecules from matrix-containing sample solution droplets, followed by electrospray ionization (ESI) post-ionization. The ELDI source is coupled to a quadrupole ion trap mass spectrometer and allows sampling under ambient conditions. Preliminary data showed that ELDI produces ESI-like multiply charged peptides and proteins up to 29 kDa carbonic anhydrase and 66 kDa bovine albumin from single-protein solutions, as well as from complex digest mixtures. The generated multiply charged polypeptides enable efficient tandem mass spectrometric (MS/MS)-based peptide sequencing. ELDI-MS/MS of protein digests and small intact proteins was performed both by collisionally activated dissociation (CAD) and by nozzle-skimmer dissociation (NSD). ELDI-MS/MS may be a useful tool for protein sequencing analysis and top-down proteomics study, and may complement matrix-assisted laser desorption/ionization (MALDI)-based measurements.  相似文献   

14.
Complex III of the mitochondrial electron transport chain, ubiquinol-cytochrome c reductase, was isolated by blue native polyacrylamide gel electrophoresis. Ten of the 11 polypeptides present in this complex were detected directly by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) following electroelution of the active complex. Tryptic and chymotryptic digestion of the complex permit the identification of specific peptides from all of the protein subunits with 70% coverage of the 250 kDa complex. The mass of all 11 proteins was confirmed by second dimension Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and elution of the separated polypeptides. Additionally, the identity of the core I, core II, cytochrome c and the Rieske iron-sulfur protein were confirmed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) characterization of the peptides generated by in-gel trypsin digestion of the SDS-PAGE separated proteins. The methodology demonstrated for analyzing this membrane-bound electron transport complex should be applicable to other membrane complexes, particularly the other mitochondrial electron transport complexes. The MS analysis of the peptides obtained by in-gel digestion of the intact complex permits the simultaneous characterization of the native proteins and modifications that contribute to mitochondrial deficits that have been implicated as contributing to pathological conditions.  相似文献   

15.
To improve the detection of phosphorylated peptides/proteins, a combination of optimized MS-based strategies were used involving chemical derivatization with a polyhistidine-tag (His-tag) and affinity enrichment of the resulting His-tag peptides on a nanoscale Ni(2+)-IMAC column. The phosphoserine and phosphothreonine peptides were derivatized using a one-pot beta-elimination/Michael addition reaction with a reversible His-tag possessing a thiol-containing Cys residue. The His-tag peptides were enriched selectively by Ni(2+)-IMAC and released using either imidazole or cleavage with Factor Xa. This novel capture and enzyme-mediated release provided an additional element of selectivity and yielded phosphopeptide-specific modifications with enhanced MS ionization characteristics. The eluted peptides were mapped using MALDI-TOF MS and QTRAP ESI-MS/MS techniques. The results obtained for a model peptide and two tryptic protein digests show that the method is highly specific and allows selective enrichment of phosphorylated peptides at low concentrations of femtomoles per microliter.  相似文献   

16.
Fagerquist CK  Yee E  Miller WG 《The Analyst》2007,132(10):1010-1023
Protein biomarkers observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectra (MALDI-TOF-MS) of cell lysates of three strains of Campylobacter coli, two strains of C. lari and one strain of C. concisus have been identified by 'bottom-up' proteomic techniques. The significant findings are as follows. First, the protein biomarkers identified were: PhnA-related protein, 4-oxalocrotonate tautomerase (DmpI)-related protein, NifU-like protein, cytochrome c, DNA-binding protein HU, 10 kDa chaperonin, thioredoxin, as well as several conserved hypothetical and ribosomal proteins. Second, variations in the biomarker ion m/z in MALDI-TOF-MS spectra across species and strains are the result of variations in the amino acid sequence of the protein due to non-synonymous mutations of the biomarker gene. Third, the most common post-translational modifications (PTMs) were the removal of the N-terminal methionine and N-terminal signal peptides. However, in the case of the NifU protein (an iron-sulfur cluster transport protein), post-translational cleavage occurred from the C-terminus. Fourth, only the genomes of the C. coli strain RM2228 and C. lari strain RM2100 have been sequenced; thus, proteomic identification of the proteins of the other strains in this study relied upon sequence homology to the genomic sequence of these strains as well as the genomes of sequences of other Campylobacter strains. In some cases, the determination of the full amino acid sequence of a protein biomarker from a genomically non-sequenced strain was accomplished by combining non-overlapping partial sequences from proteomic identifications of genomically-sequenced strains that were of the same species (or of a different species) to that of the non-sequenced strain. The accuracy of this composite sequence was confirmed by both MS and MS/MS. It was necessary, in some cases, to perform de novo sequencing on 'gaps' in the composite sequence that were not homologous to any genomically-sequenced strain. In order to validate the composite sequence approach, composite sequences were further confirmed by subsequent DNA sequencing of the biomarker gene. Thus, using the composite sequence approach, it was possible to determine the full amino acid sequence of an unknown protein from a genomically non-sequenced bacterial strain without the necessity of either sequencing the biomarker gene or performing full de novo MS/MS sequencing. The sequence obtained could then be used as a strain-specific biomarker for analysis by 'top-down' proteomics techniques.  相似文献   

17.

Background

A group of abundant proteins of ~30 kDa is synthesized in silkworm larval peripheral fat body (PPFB) tissues and transported into the open circulatory system (hemolymph) in a time-depended fashion to be eventually stored as granules in the pupal perivisceral fat body (PVFB) tissues for adult development during the non-feeding stage. These proteins have been shown to act anti-apoptotic besides being assigned roles in embryogenesis and defense. However, detailed protein structural information for individual PPFB and PVFB tissues during larval and pupal developmental stages is still missing. Gel electrophoresis and chromatography were used to separate the 30 kDa proteins from both PPFB and PVFB as well as hemolymph total proteomes. Mass spectrometry (MS) was employed to elucidate individual protein sequences. Furthermore, 30 kDa proteins were purified and biochemically characterized.

Results

One- and two-dimensional gel electrophoresis (1/2D-PAGE) was used to visualize the relative changes of abundance of the 30 kDa proteins in PPFB and PVFB as well as hemolymph from day 1 of V instar larval stage to day 6 of pupal stage. Their concentrations were markedly increased in hemolymph and PVFB up to the first two days of pupal development and these proteins were consumed during development of the adult insect. Typically, three protein bands were observed (~29, 30, 31 kDa) in 1D-PAGE, which were subjected to MS-based protein identification along with spots excised from 2D-gels run for those proteomes. Gas phase fragmentation was used to generate peptide sequence information, which was matched to the available nucleotide data pool of more than ten highly homologous insect 30 kDa lipoproteins. Phylogenetic and similarity analyses of those sequences were performed to assist in the assignment of experimentally identified peptides to known sequences. Lipoproteins LP1 to LP5 and L301/302 could be matched to peptides extracted from all bands suggesting the presence of full length and truncated or modified protein forms in all of them. The individual variants could not be easily separated by classical means of purification such as 2D-PAGE because of their high similarity. They even seemed to aggregate as was indicated by native gel electrophoresis. Multistep chromatographic procedures eventually allowed purification of an LP3-like protein. The protein responded to lipoprotein-specific staining.

Conclusions

In B. mori larvae and pupae, 30 kDa lipoproteins LP1 to LP5 and L301/302 were detected in PPFB and PVFB tissue as well as in hemolymph. The concentration of these proteins changed progressively during development from their synthesis in PPFB, transport in hemolymph to storage in PVFB. While the 30 kDa proteins could be reproducibly separated in three bands electrophoretically, the exact nature of the individual protein forms present in those bands remained partially ambiguous. The amino acid sequences of all known 30 kDa proteins showed very high homology. High-resolution separation techniques will be necessary before MS and other structural analysis can shed more light on the complexity of the 30 kDa subproteome in B. mori. A first attempt to that end allowed isolation of a B. mori LP3-like protein, the complete structure, properties and function of which will now be elucidated in detail.  相似文献   

18.
The degradation is critical to activation and deactivation of regulatory proteins involved in signaling pathways to cell growth, differentiation, stress responses and physiological cell death. Proteins carry domains and sequence motifs that function as prerequisite for their proteolysis by either individual proteases or the 26S multicomplex proteasomes. Two models for entry of substrates into the proteasomes have been considered. In one model, it is proposed that the ubiquitin chain attached to the protein serves as recognition element to drag them into the 19S regulatory particle, which promotes the unfolding required to its access into the 20S catalytic chamber. In second model, it is proposed that an unstructured tail located at amino or carboxyl terminus directly track proteins into the 26S/20S proteasomes. Caspases are cysteinyl aspartate proteases that control diverse signaling pathways, promoting the cleavage at one or two sites of hundreds of structural and regulatory protein substrates. Caspase cleavage sites are commonly found within PEST motifs, which are segments rich in proline (P), glutamic acid (D), aspartic acid (E) and serine (S) or threonine (T) residues. Considering that N- and C- terminal peptide carrying PEST motifs form disordered loops in the globular proteins after caspase cleavage, it is postulated here that these exposed termini serve as unstructured initiation site, coupling caspase cleavage and ubiquitin-proteasome dependent and independent degradation of short-lived proteins. This could explain the inherent susceptibility to proteolysis among proteins containing PEST motif.  相似文献   

19.
Proteins with molecular mass (M(r)) <20 kDa are often poorly separated in 2-D sodium dodecyl sulfate polyacrylamide gel electrophoresis. In addition, low-M(r) proteins may not be readily identified using peptide mass fingerprinting (PMF) owing to the small number of peptides generated in tryptic digestion. In this work, we used a 2-D liquid separation method based on chromatofocusing and non-porous silica reversed-phase high-performance liquid chromatography to purify proteins for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis and protein identification. Several proteins were identified using the PMF method where the result was supported using an accurate M(r) value obtained from electrospray ionization TOFMS. However, many proteins were not identified owing to an insufficient number of peptides observed in the MALDI-TOF experiments. The small number of peptides detected in MALDI-TOFMS can result from internal fragmentation, the few arginines in its sequence and incomplete tryptic digestion. MALDI-QTOFMS/MS can be used to identify many of these proteins. The accurate experimental M(r) and pI confirm identification and aid in identifying post-translational modifications such as truncations and acetylations. In some cases, high-quality MS/MS data obtained from the MALDI-QTOF spectrometer overcome preferential cleavages and result in protein identification.  相似文献   

20.
In this work, synthetic peptides were used to determine the fragmentation behavior of ubiquitinated peptides and to find ions diagnostic for peptide ubiquitination. The ubiquitin-calmodulin peptide1 was chosen as the model peptide for naturally occurring ubiquitinated proteins cleaved with endoproteinase gluC. In addition, the fragmentation behavior of model ubiquitinated peptides produced by tryptic digestion was also of great interest since the standard protocols for proteomics-based protein identification use trypsin as the protease. Attachment of ubiquitin to a target protein results in a branched structure, but only ions from the ubiquitin side chain (and the lysine to which it is attached) can be used as diagnostic ions, since fragment ions that contain other amino acids from the parent protein will vary in mass. Characteristic b-type fragment ions from the gluC cleavage of the ubiquitin side chain (designated as b ions) were found which involve only the ubiquitin tail (b2, b3, b4, b5 and b6 ions at m/z 189.06, 302.12, 439.18, 552.30 and 651.30, respectively). Maximum production of these ions occurred at a collision energy of 45 eV in a Q-TOF instrument. Although a non-ubiquitinated peptide may produce isobaric fragment ions, it is unlikely that it can produce these ions in combination. With liquid chromatography/tandem mass spectrometry (LC/MS/MS) experiments, ubiquitinated peptides can readily be determined by surveying the reconstructed or extracted ion chromatograms of the diagnostic fragment ions for common peaks. Characteristic ions resulting from tryptic cleavage of the side chain were found in cleavage products with a missed cleavage, resulting in a LRGG- tag instead of a GG- tag. For the LRGG-tagged peptide, diagnostic MS/MS fragment ions (at m/z 270.17 and 384.21) from the ubiquitin tail (b2 and b4, respectively) were found, along with an internal fragment ion (LRGGK-28) at m/z 484.30. These ions should prove useful in precursor-ion scanning experiments for identifying peptides modified by attachment of ubiquitin, and for locating the site of ubiquitin attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号