首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The intercalation ofd10 ions Zn2+ and Cd2+ by electron/ion transfer reactions into the Chevrel-type molybdenum cluster chalcogenidesMo6X8 (X =S, Se) demonstrates the competitive influence of electronic and steric factors upon these processes. The following rhombohedral phases have been identified: Zn1Mo6S8, Zn2Mo6S8, Zn1Mo6Se8, Zn2Mo6Se8, Cd1Mo6S8, Cd1Mo6Se8, and Cd2Mo6Se8. Thermodynamic data and chemical diffusion coefficients are given. The intercalation of Na+, which has an ionic radius close to that of Cd2+, exhibits a strong influence of kinetics leading to the partial irreversibility of the reaction and the formation Na1Mo6S8 and Na1Mo6Se8, the first cubic phases among the molybdenum cluster chalcogenidesAxMo6X8.  相似文献   

2.
The crystal structure of dicaesium pentadecamolybdenum nonadeca­sulfide, Cs2Mo15S19, consists of a mixture of Mo6S8S6 and Mo9S11S6 cluster units in a 1:1 ratio. Both units are interconnected via inter‐unit Mo—S bonds. The Cs+ cations occupy large voids between the different cluster units. The Cs and two inner S atoms lie on sites with 3 symmetry (Wyckoff site 12c) and the Mo and S atoms of the median plane of the Mo9S11S6 cluster unit on sites with 2 symmetry (Wyckoff site 18e).  相似文献   

3.
The crystal structure of hexacaesium heptacosamolybdenum hentriaconta­sulfide, Cs6Mo27S31, consists of a mixture of Mo9S11S6 and Mo18S20S6 cluster units in a 1:1 ratio. The units are connected through Mo—S bonds. Cs+ cations occupy large voids between the different cluster units.  相似文献   

4.
Two new Mo compounds, Tl2Mo9S11 and K2Mo9S11, have been found. The structure of these compounds is characterized by the presence of a completely new building block, Mo12S14, in addition to the well-known Mo6S8 unit as in the PbMo6S8-type compounds. The new cluster, Mo12, contained in the Mo12S14 unit can be considered as a one-dimensional condensation of three Mo6 octahedral clusters. These new materials, the structure of which resembles that of PbMo6S8, are metallic but are not superconducting above 2.1°K.  相似文献   

5.
《Solid State Sciences》2012,14(6):719-724
Powders and thin films of the copper molybdenum sulfide Cu2Mo6S8 were synthesized from intermediate oxides prepared by polymeric precursor method based on Pechini process. In the case of the thin films, deposition was performed onto R-plane sapphire single crystal by spin coating. The influence of temperature and duration of the 3 step heat treatment cycle (calcination, sulfurization and reduction) were investigated to optimize the synthesis conditions. The first step of calcination under air atmosphere performed for 3 h at 450 °C and 400 °C is suitable to obtain the intermediate oxides powders and thin films, respectively. The sulfurization treatment at 600 °C for 2 h under H2S/H2 gas flow followed by reduction at 650 °C for 4 h under H2 gas flow allowed to obtain Cu2Mo6S8 in powder or thin film form. In the last case, a multilayer process led to dense and homogeneous films. Moreover, the insertion and superconducting behaviour of the final powders allowed to validate the Cu2Mo6S8 synthesis by this moderate temperature process.  相似文献   

6.
Pt-catalyzed hydrogen reduction of MoS2 and WS2 at 1000–1050°C yields new metal-rich sulfidesM21S8 andM14S5 (M =Mo or W). The reduction of MoS2 proceeds via the intermediate Mo6S8. Chevrel phases, CuxMo6S8(x < 4.0) and Ni2Mo6S8, are readily prepared by hydrogen reduction of MoS2 in the presence of the ternary metal.  相似文献   

7.
The Chevrel phase (CP), Mo6S8, was found to be an excellent cathode material for rechargeable magnesium batteries. Mo6S8 is obtained by a leaching process of Cu2Mo6S8, which removes the copper. A new method of Cu2Mo6S8 production was developed. In contrast to the well-known solid-state synthesis of CP, the method is based on the reaction in a molten salt media (KCl). A fast kinetics of this reaction allows using less active, but more convenient precursors (sulfides instead of sulfur), decreasing temperature and synthesis duration, as well as operation in the inert atmosphere instead of dynamic evacuated systems. It was shown that the composition and the electrochemical behavior of the products obtained by MSS and by the solid-state synthesis are identical. Thus, the molten salt method is extremely attractive for the large-scale production of the active materials for Mg batteries.  相似文献   

8.
Relativistic density functional calculations including scalar and spin-orbit effects via the ZORA approximation and including solvent effects were carried out on the [Re6S8(CN)6]4−, [Re5MoS8(CN)6]5−, [Re4Mo2S8(CN)6]5−, [Re3Mo3S8(CN)6]5−, [Re2Mo4S8(CN)6]5−, [ReMo5S8(CN)6]5− and [Mo6S8(CN)6]6− clusters. By increasing the replacement of each Re atom with Mo atoms we find that for x > 2 the HOMO–LUMO gap decreases significantly. The calculated gap of the [Re3Mo3S8(CN)6]5−, [Re2Mo4S8(CN)6]5− and [ReMo5S8(CN)6]5− clusters is similar to the calculated and observed gap of the superconducting PbMo6S8 Chevrel phases. The current calculations also indicates that the electronic similarities of the lowest excited states of the semiconducting 24e [Re5MoS8(CN)6]5− and 23e [Re4Mo2S8(CN)6]5− clusters with the strongly luminescent 24e [Re6S8(CN)6]4− cluster, suggest that these mixed metal clusters might be luminescent.  相似文献   

9.
The structure of scandium dirubidium pentadecamolybdenum nonadecasulfide, Sc0.43 (2)Rb2Mo15S19, constitutes a partially Sc‐filled variant of Rb2Mo15S19 [Picard, Saillard, Gougeon, Noel & Potel (2000), J. Solid State Chem. 155 , 417–426]. In the two compounds, which both crystallize in the Rc space group, the structural motif is characterized by a mixture of Mo6Si8Sa6 and Mo9Si11Sa6 cluster units (`i' is inner and `a' is apical) in a 1:1 ratio. The two components are interconnected through interunit Mo—S bonds. The cluster units are centred at Wyckoff positions 6b and 6a (point‐group symmetries and 32, respectively). The Rb+ cations occupy large voids between the different cluster units. The Rb and the two inner S atoms lie on sites with 3. symmetry (Wyckoff site 12c), and the Mo and S atoms of the median plane of the Mo9S11S6 cluster unit lie on sites with .2 symmetry (Wyckoff site 18e). A unique feature of the structure is a partially filled octahedral Sc site with symmetry. Extended Hückel tight‐binding calculations provide an understanding of the variation in the Mo—Mo distances within the Mo clusters induced by the increase in the cationic charge transfer due to the insertion of Sc.  相似文献   

10.
The active molybdenum sulfide compound Mo2S3, which should be considered as a cathode material for thin-layer rechargeable power source, has been produced by electrolysis. Using impedance spectroscopy and potential relaxation method after current interruption, the kinetic parameters of lithium intercalation in electrolytic Mo2S3 have been obtained. Activation energy of Li+ migration in electrolyte (13.76 kJ/mol), charge transfer through the Mo2S3 electrode/electrolyte interface (38.8 kJ/mol), and Li+ diffusion in a solid phase (57.3 kJ/mol) have also been established. Taking into account the coefficient data of charge mass transfer in a solid phase and the reaction rate coefficient of charge transfer through the interface electrode/electrolyte within the temperature range 20–50 °C, the stage of Li+ transfer in a solid phase has been determined as a limiting stage for lithium intercalation in electrolytic molybdenum sulfide Mo2S3.  相似文献   

11.
12.
Brylev  K. A.  Virovets  A. V.  Naumov  N. G.  Mironov  Yu. V.  Fenske  D.  Fedorov  V. E. 《Russian Chemical Bulletin》2001,50(7):1140-1143
The new octahedral molybdenum thiocyanide cluster complex K7[Mo6S8(CN)6]·8H2O was synthesized by excision of the cluster core (the reaction of ZnMo6S8 with a melt of KCN). The structure of the complex was established by X-ray diffraction analysis. The reaction of Mo6Se8 with a KCN—KSCN mixture afforded the mixed-ligand cluster anions [Mo6(Se,S)8(CN)6]7–. The salt of composition K1.5Cs5.5[Mo6Se6.8S1.2(CN)6]·8H2O was obtained. The complexes are isostructural to each other and to the selenium analog described previously. The magnetic properties and the electronic and IR spectra were measured and discussed.  相似文献   

13.
We present a study of the properties of the series Mo6X8?xYx (X = S, Se, Te; Y = Br, I) having the hexagonal rhombohedral structure of the PbMo6S8 type. For X = S we have found two new superconducting compounds Mo6S6Br2 and Mo6S6I2, having critical temperatures of 13.8 and 14.0°K, respectively. We further find that Mo6Te8 becomes superconducting (Tc ≈ 2.6°K) upon substitution of Te by small quantities of iodine, and that in the case of Mo6Se8 substitution of a Se atom by a halogen, raises Tc up to about 7.6°K.  相似文献   

14.
Abstract

The electronic structures of S and Mo as well as the local coordination of Mo are investigated as a function of metal promotion Chevrel-phase (CP) sulfides. We observe the effect of metal promoter-induced electron donation into the stoichiometric range MxMo6S8 (M?=?Fe, Ni, Cu; x?=?0–2) through analysis of X-ray absorption near-edge structure regions. We further observe the effect of this promotion on the bonding environment of Mo6 metal centers through extended X-ray absorption fine structure analysis. We monitor expansion and contraction of Mo6 octahedra with and without metal promotion, as has been predicted by Hückel molecular orbital theory. We further observe a marked tunability in the electronic structure of sulfur upon charge transfer between promoting species and Mo6S8 units. Average Mo6 octahedron Mo–Mo bond contraction from 2.76 Å to as short as 2.69 Å was observed upon incorporation of metal promoters, while intercluster separation displays a pronounced increase for promoter-host lattices compared to un-promoted Mo6S8. To corroborate spectroscopically observed phenomena, we performed computational analyses of spin-polarized densities of state for the CP materials investigated herein, where a detectable increase in sulfur-based frontier orbital population is observed in accordance with experimentally validated orbital filling.  相似文献   

15.
Molybdenum sulfides nanomaterials, such as one-dimensional (1D) nanotubes, nanoribbons, and two-dimensional (2D) nanosheets, have attracted intensive research interests for their novel electronic, optical, and catalytic properties. On the basis of first-principles calculation, here, we report a new series of 1D ultrathin molybdenum sulfides nanowires, including Mo2S6、Mo3S6 and Mo6S10 nanowires. Our results demonstrate that these ultrathin nanowires are both thermal and lattices dynamically stable, confirmed with the calculated phonon spectrum and Born-Oppenheimer molecular dynamic simulation at the temperature up to 600 K. The calculated elastic constant is 21.33, 103.22, and 163.00 eV/? for Mo2S6, Mo3S6, and Mo6S10 nanowires, respectively. Mo2S6 and Mo3S6 nanowires are semiconductors with band gap of 1.55 and 0.46 eV, while Mo6S10 nanowires is metal, implying their potential applications in electronics and optoelectronics. In particular, ultrathin molybdenum sulfides nanowires can be used as catalysts for hydrogen evolution reaction. The calculated Gibbs free energy change for hydrogen evolution is about -0.05 eV for Mo2S6 nanowire, comparable with those of Pt and H-MoS2. The prediction of these 1D molybdenum sulfides nanowires may enrich the 1D family molybdenum sulfides and make a supplement to understand the high performance of hydrogen evolution reaction in transition-metal dichalcogenides.  相似文献   

16.
A potassium-crownether host–guest cation-templated synthetic method was used to build a heterothiometallic Mo/S/Cu cluster {[(K ? dibenzo-18-crown-6)(NMP)2]2[(K ? dibenzo-18-crown-6)(NMP)]2[Mo8S32Cu12]·H2O} (1). 1 was structurally determined by X-ray single crystal and powder diffractions. The anionic Mo/S/Cu cluster [Mo8S32Cu12]4? exhibits a unique octameric eicosanuclear supra-cubane-like architecture. Potassium-crownether cations show “satellite-receiver”-shaped and hexagonal-pyramidal configurations. Moreover, the third-order nonlinear optical (NLO) property was studied through Z-scan method (532 nm, 4 ns pulses), which reveals that 1 possesses effective NLO absorptive and refractive properties.  相似文献   

17.
The Ginzburg number of superconducting Chevrel phases MxMo6S8 with small coherence length (10−3 to 10−5) is intermediate between those obtained for conventional low Tc materials (10−8) and those of high Tc (10−1) indicating that these phases may display features in the dynamics of the vortices similar to those observed in high Tc superconductors. In this work we present a detailed study of I–V measurements close to the Bc2 line carried out on quasi epitaxial thin films of Cu2Mo6S8. The non-linear I–V curves show a scaling behaviour making possible to determine a transition temperature between an unpinned vortex state and a vortex glass state. However, the temperature range of the unpinned vortex state is much wider than expected.  相似文献   

18.
A crystallographic approach was applied to elucidate the influence of the nature of the surface films on the electrochemical behavior of Li and Mg intercalation compounds. This paper presents two examples: (1) protection of graphite electrodes by Li2CO3 surface films, and (2) the unique electrochemical behavior of Mg-containing Chevrel phases (MgCP) obtained by different synthetic routes. In the former case, the elucidation of the protection mechanism and the explanation of the high performance of such protected electrodes are based on the analysis of possible Li-ion motion in the carbonate crystal structure. In the latter case, a combination of synthesis, electrochemistry and XRD analysis was used to explain an unusual phenomenon: the difference between the excellent electrochemical behavior of the Chevrel phase (CP) based on Cu-leached Cu2Mo6S8 (CuCP), and the poor electrochemical activity of the high-temperature synthesized MgCP, with the same phase composition. It is shown that this phenomenon is caused by MgO formation on the surface of the latter material. The different surface chemistry of the MgCPs obtained by the two different synthetic routes was substantiated by revealing the correlation between the electrochemical activity and the chemical stability of these materials under ambient atmosphere conditions. Dedicated to Prof. Mikhail A. Vorotyntsev on the occasion of his 60th birthday.  相似文献   

19.
The black crystal of (NH4)[Mo2(S2)6]* 8/3 H2O belongs to the orthorhombic system, space group D32-P22121, with a = 12.064(6), b = 12.534(4), c = 19.558(9)Å, V =2957(3)Å3, Z = 4 and Dc = 2.23g.cm?3. The intensity data were collected on a Syntex R3 four-circle diffractometer. The structure was solved by Patterson method and direct method, the light atoms (except H atoms) were obtained from ΔF syntheses. The structure was refined by least-squares with anisotropic thermal parameters. The values of R and Rw were 0.092 and 0.072 respectively. The crystal structure contains discrete dimeric cluster [Mo2(S2)6]2? ions, NH4+ cations and H2O molecules. There are two crystallographically independent [Mo2S2)6]2? ions in the crystal, one locates on general position [Figure 1(a)], the other locates on two-fold axis [Figure 1(b)]. It contains one and a half [Mo2S2)6]2? ions in an asymmetric unit. In [Mo2S2)6]2? each Mo is coordinated side on by four S22? groups in a distorted dodecahedral arrangement, two of which are bridging and the other two are terminal. The Mo? S bond length is 2.441 Å (mean), and S? S is 2.049 Å (mean). The Mo? Mo distance is 2.784 Å (mean), which is to be regarded as a single bond length. The formal oxidation state of Mo is five, it is probably a mixed valence MoIV? MoVI, and so shows a remarkable deep colour.  相似文献   

20.
This paper reports on EXAFS and XANES studies of structural changes in complex compounds (H3O)2Co3[Re6Se8(CN)6]214.5H2O, Cs2Co[Re6S8(CN)6]2H2O, and Co(DMF)6[Mo6Br8(NCS)6] containing the octahedral cluster anions of rhenium [Re6X8(CN)6]4– (X = S, Se) or molybdenum [Mo6Br8(NCS)6]2–, induced by vacuum annealing at temperatures of up to 250°C. According to EXAFS and XANES data, the complex cluster anions do not undergo any pronounced changes during annealing. The parameters of the local environment of the cobalt cations have been determined. Structural models of the environment of the cations in various compounds after desolvation have been constructed. For Co(DMF)6[Mo6Br8(NCS)6], vacuum annealing at 250°C leads to a complete removal of DMF and formation of a new compound, Co[Mo6Br8(NCS)6], in which the cobalt atoms are coordinated by four sulfur atoms of the SCN groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号