首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用主温固相法合成了Yb3+、Bi3+共掺的YVO4,研究了Bi3+的掺入对YVO4:Yb3+发光光谱的影响和近红外发光的敏化作用.X射线衍射图谱研究表明:掺入Yb3+、Bi3+之后,基质YVO4的晶格结构没有发生明显变化.Bi3+的掺入不仅显著增强了样品中Yb3+的特征远红外发光强度,还使YVO4:Yb3+激发光谱的范围红移,当Bi3+掺入的摩尔分数从0增加到0.05时,样品的最强激发峰位置从335nm红移至352 nm,激发光谱范围由300-360 nm扩宽至300-430 nm.优化的Bi3+掺入量为0.03.初步讨论了VO43-,Bi3+Yb3+间的能量传递机理.结果表明Bi3-的共掺使YVO4:Yb3+样品对长波紫外光的响应性能大大改善,作为一种基于量子剪裁的光谱转换材料,可以更好地匹配太阳光的能量谱,有助于提高硅太阳能电池的光电转换效率.  相似文献   

2.
Direct near-IR excitation of Yb(3+) 2F(7/2)-->(2)F(5/2) levels at 10126, 10138, and 10596 cm(-1) in CsMnBr3:0.5%Yb(3+) leads to three types of luminescence at cryogenic temperatures: near-IR Yb(3+) emission and green and red upconverted luminescence. The green luminescence around 20 000 cm(-1) is identified as cooperative Yb(3+) pair upconversion. The broad red upconversion luminescence band centered at 14 700 cm(-1) is ascribed to the 4T(1g)-->6A(1g) transition of Mn(2+). Pulsed measurements indicate a sequence of ground-state absorption and excited-state absorption steps for the red upconversion process. One- and two-color excitation experiments support this, and we conclude that the red upconversion occurs by an exchange mechanism involving Yb(3+) and Mn(2+). The Yb(3+) 2F(5/2)-->(2)F(7/2) near-IR emission around 10 000 cm(-1) is also observed after Mn(2+) excitation at 21 838 cm(-1). This is indicative of a Mn(2+) 4T(1g)--> Yb(3+) 2F(5/2) relaxation process, which is a potential loss process for upconversion efficiency.  相似文献   

3.
C Liu  H Liang  X Kuang  J Zhong  S Sun  Y Tao 《Inorganic chemistry》2012,51(16):8802-8809
A series of Ca(3)La(3(1-x))Ce(3x)(BO(3))(5) phosphors were prepared by a high-temperature solid-state reaction technique. Rietveld refinement was performed using the powder X-ray diffraction (XRD) data, which shows occupation of Ce(3+) on both Ca(2+) and La(3+) sites with a preferred location on the La(3+) site over the Ca(2+) site. The prepared samples contain minor second phase LaBO(3) with contents of ~0.64-3.27 wt % from the Rietveld analysis. LaBO(3):1%Ce(3+) was prepared as a single phase material and its excitation and emission bands were determined for identifying the influence of impurity LaBO(3):Ce(3+) luminescence on the spectra of the Ca(3)La(3(1-x))Ce(3x)(BO(3))(5) samples. The luminescence properties of Ca(3)La(3(1-x))Ce(3x)(BO(3))(5) samples under vacuum ultraviolet (VUV) and UV excitation were investigated, which exhibited two-center luminescence of Ce(3+), assigned to the Ce(1)(3+) center in the La(3+) site and Ce(2)(3+) center in the Ca(2+) site, taking into account the spectroscopic properties and the Rietveld refinement results. The influences of the doping concentration and the excitation wavelength on the luminescence of Ce(3+) in Ca(3)La(3(1-x))Ce(3x)(BO(3))(5) are discussed together with the decay characteristics.  相似文献   

4.
A red-emitting phosphor, Eu(3+)-doped Ca(9)LiGd(2/3)(PO(4))(7), was synthesized by the conventional high-temperature solid-state reaction. X-ray powder diffraction (XRD) analyses confirmed the pure crystalline phase of Whitlockite-type structure. The excitation spectra of Eu(3+) doped Ca(9)LiGd(2/3)(PO(4))(7) were measured in the VUV and UV region indicating an efficient energy transfer process from the host and Gd(3+) to Eu(3+) ions. Upon excitation with VUV and UV radiation, the phosphor showed strong red emission around 611 nm corresponding to the forced electric dipole (5)D(0)→(7)F(2) transition of Eu(3+) ions. The VUV- and UV-excited luminescence spectra of Ca(9)LiGd(2/3)(PO(4))(7):Eu(3+) together with the dependence of the integrated emission intensities on the doping levels were investigated. The Eu(3+) ions were investigated by a tunable laser as an excitation source. The excitation spectra of (7)F(0)→(5)D(0) transitions suggest that there are two families of inequivalent sites for Eu(3+) in this host. The concentration quenching and crystallographic site-occupancy of Eu(3+) ions in Ca(9)LiGd(2/3)(PO(4))(7) host were discussed on the basis of the site selective excitation and emission spectra, the luminescence decay and its crystal structure.  相似文献   

5.
The optically active dopant distribution in a Tm(3+)-Yb(3+) doped silica based glass ceramic sample has been investigated. A systematic analysis of the upconversion fluorescence of the Tm(3+)-Yb(3+) codoped glass and glass ceramic has been performed at room temperature. Tm(3+) and Yb(3+) single doped glass and glass ceramics have also been included in the study. Upon infrared excitation at 790 nm into the (3)H(4) level of the Tm(3+) ions a blue upconversion emission is observed, which is drastically increased in the Yb(3+) codoped samples. A rate equation model confirmed the energy transfer upconversion mechanism. Based on these results, the temporal dynamic curves of the levels involved in the upconversion process, (3)H(4), (2)F(5/2), and (1)G(4) were interpreted in the glass ceramic samples. The contribution of the optically active Tm(3+) and Yb(3+) ions in the crystalline and in the vitreous phase of the glass ceramic was distinguished and the ratio of Tm(3+) ions in the crystalline phase could be quantified for the 1 mol % Tm(3+)-2.5 mol % Yb(3+) glass ceramic. A surprising result was obtained for that concentration: the main contribution to the upconversion emission of the glass ceramic is due to Tm(3+)-Yb(3+) ions in the vitreous phase.  相似文献   

6.
Lu(3)Al(5)O(12) (LuAG) doped with Ce(3+) is a promising scintillator material with a high density and a fast response time. The light output under X-ray or γ-ray excitation is, however, well below the theoretical limit. In this paper the influence of codoping with Tb(3+) is investigated with the aim to increase the light output. High resolution spectra of singly doped LuAG (with Ce(3+) or Tb(3+)) are reported and provide insight into the energy level structure of the two ions in LuAG. For Ce(3+) zero-phonon lines and vibronic structure are observed for the two lowest energy 5d bands and the Stokes' shift (2 350 cm(-1)) and Huang-Rhys coupling parameter (S = 9) have been determined. Tb(3+) 4f-5d transitions to the high spin (HS) and low spin (LS) states are observed (including a zero-phonon line and vibrational structure for the high spin state). The HS-LS splitting of 5400 cm(-1) is smaller than usually observed and is explained by a reduction of the 5d-4f exchange coupling parameter J by covalency. Upon replacing the smaller Lu(3+) ion with the larger Tb(3+) ion, the crystal field splitting for the lowest 5d states increases, causing the lowest 5d state to shift below the (5)D(4) state of Tb(3+) and allowing for efficient energy transfer from Tb(3+) to Ce(3+) down to the lowest temperatures. Luminescence decay measurements confirm efficient energy transfer from Tb(3+) to Ce(3+) and provide a qualitative understanding of the energy transfer process. Co-doping with Tb(3+) does not result in the desired increase in light output, and an explanation based on electron trapping in defects is discussed.  相似文献   

7.
Au nanoparticles (NPs) attached β-NaYF(4) nanocrystals codoped with Gd(3+)-Yb(3+)-Tm(3+) were synthesized by a facial solution method. The UV-vis-near-infrared absorption spectrum shows typical surface plasmon resonance band of Au NPs in addition to the characteristic absorption peaks of Yb(3+) ion. X-ray diffraction and selected area electron diffraction results indicate the existence of Au NPs. The transmission electron microscopic image reveals the formation of Au@NaYF(4) nanostructures. Enhanced ultraviolet (UV) upconversion luminescence (UCL) was observed in the nanostructures under the excitation of 980-nm infrared laser. The largest enhancement factor was obtained as 76 for the (6)I(J)→(8)S(7/2) emission of Gd(3+) ions, which was much larger than those emission enhancement factors of Tm(3+). It is for the first time to our knowledge that the emission enhancement of Gd(3+) ions was obtained. Local field enhancement induced by Au NPs was found to be responsible for the UCL enhancement, which is the further experimental evidence of local field enhancement theory. Magnetic measurements of the Au@NaYF(4) nanostructure indicated it would have potential application in magnetic resonance imaging.  相似文献   

8.
采用静电纺丝技术制备了PVA/[Y(NO3)3+Yb(NO3)3+Er(NO3)3]复合纳米纤维,将其在适当的温度下进行热处理,得到Y2O3∶Yb3+,Er3+上转换纳米纤维.XRD分析表明,复合纳米纤维为无定形,Y2O3∶Yb3+,Er3+上转换纳米纤维属于体心立方晶系,空间群为Ia3.SEM分析表明,复合纳米纤维的平均直径约为150nm;随着焙烧温度的升高,纤维直径逐渐减小.经过600℃焙烧后,获得了直径约60nm的Y2O3∶Yb3+,Er3+上转换纳米纤维.TG-DTA分析表明,当焙烧温度高于600℃时,复合纳米纤维中水分、有机物和硝酸盐分解挥发完毕,样品不再失重,总失重率为83%.FTIR分析表明,复合纳米纤维与纯PVA的红外光谱一致,当焙烧温度高于600℃时,生成了Y2O3∶Yb3+,Er3+上转换纳米纤维.该纤维在980nm的半导体激光器激发下发射出中心波长为521,562nm的绿色和656nm的红色上转换荧光,分别对应于Er3+离子的2H11/2/4S3/2→4Il5/2跃迁和4F9/2→4Il5/2跃迁.对Y2O3∶Yb3+,Er3+上转换纳米纤维的形成机理进行了讨论.  相似文献   

9.
The title compounds were synthesized and studied by solution and single-crystal absorption, luminescence, and excitation spectroscopy. The f-f luminescence is induced in the Tm(3+) and Yb(3+) complexes in solution by exciting into the (1)Pi-(1)Pi absorptions of the ligand in the UV. A single-configurational coordinate model is proposed to rationalize the nonradiative relaxation step from ligand-centered to metal-centered excited states in [Yb(dpa)(3)](3-) (dpa = 2,6-pyridinedicarboxylate). Direct f-f excitation is used in crystals of Na(3)[Tm(dpa)(3)].13H(2)O and Na(3)[Yb(dpa)(3)].13H(2)O to induce f-f luminescence. From low-temperature, high-resolution absorption, luminescence, and excitation spectra, the ligand-field splittings in the relevant states can be determined. It was impossible to induce NIR to VIS upconversion in any of the complexes. This is mainly due to the fact that nonradiative relaxation among the f-f excited states is highly competitive, even in [Yb(dpa)(3)](3-) with an energy gap between (2)F(5/2) and (2)F(7/2) of about 10000 cm(-1). It can be rationalized on the basis of an adapted energy gap law. No luminescence at all could be detected in Na(3)[Er(dpa)(3)].13H(2)O.  相似文献   

10.
Xie M  Tao Y  Huang Y  Liang H  Su Q 《Inorganic chemistry》2010,49(24):11317-11324
The VUV-vis spectroscopic properties of Tb(3+) activated fluoro-apatite phosphors Ca(6)Ln(2-x)Tb(x)Na(2)(PO(4))(6)F(2) (Ln = Gd, La) were studied. The results show that phosphors Ca(6)Gd(2-x)Tb(x)Na(2)(PO(4))(6)F(2) with Gd(3+) ions as sensitizers have intense absorption in the VUV range. The emission color of both phosphors can be tuned from blue to green by changing the doping concentration of Tb(3+) under 172 nm excitation. The visible quantum cutting (QC) via cross relaxation between Tb(3+) ions was observed in cases with and without Gd(3+). Though QC can be realized in phosphors Ca(6)La(2-x)Tb(x)Na(2)(PO(4))(6)F(2), we found that Gd(3+)-containg phosphors have a higher QC efficiency, confirming that the Gd(3+) ion indeed plays an important role during the quantum cutting process. In addition, the energy transfer process from Gd(3+) to Tb(3+) as well as (5)D(3)-(5)D(4) cross relaxation was investigated and discussed in terms of luminescence spectra and decay curves.  相似文献   

11.
Three oxygen-containing gas-phase diatomic trications ReO(3+), NbO(3+) and HfO(3+) as well as the diatomic tetracation NbO(4+) have been observed by mass spectrometry at non-integer m/z values. These unusual triply charged molecular ion species, together with the corresponding diatomic dications ReO(2+), NbO(2+) and HfO(2+), were produced by energetic, high-current oxygen ((16)O(-)) ion beam sputtering of rhenium, niobium and hafnium metal samples, respectively, whose surfaces were dynamically oxidized by oxygen primary ion incorporation. In addition, NbO(z+) (z≤ 4) were generated by intense femtosecond laser excitation and photofragmentation (Coulomb explosion) of Nb(x)O(y) clusters and were detected through Time-of-Flight Mass Spectrometry (TOF). Our experimental results confirm previous reports on the detection of NbO(4+), NbO(3+), NbO(2+), HfO(3+) and HfO(2+) with Atom Probe mass spectrometry, whereas ReO(3+) and ReO(2+) apparently had not been observed before. In addition, these multiply charged molecular ions have been studied theoretically for the first time. Ab initio calculations of their electronic structures show that the diatomic trications ReO(3+), NbO(3+) and HfO(3+) are long-lived metastable gas-phase species, with bond lengths of 1.61 ?, 1.62 ? and 1.86 ?, respectively. They present large potential barriers with respect to dissociation of more than 2.7 eV. The corresponding diatomic dications are thermochemically stable molecules with very large dissociation energies (>3.5 eV). Our calculations predict the diatomic tetracation ReO(4+) to be a metastable ion species in the gas phase. We compute a potential barrier toward fragmentation of 0.6 eV; its formation requires a quadruple adiabatic ionization energy of 85.7 eV. Even though our calculations show that NbO(4+) is a weakly bound (dissociation barrier ~0.1 eV) metastable molecule, it is here identified via linear time-of-flight mass spectrometry.  相似文献   

12.
To obtain efficient blue upconversion laser glasses, upconversion luminescence and mechanisms of Tm(3+)/Yb(3+)-codoped oxyhalide tellurite glasses were investigated under 980 nm excitation. The results showed that upconversion blue and red emission intensities of Tm(3+) first increase, reach its maximum at Tm(2)O(3)%=0.1 mol %, and then decrease with increasing Tm(2)O(3) content. The effect of Tm(2)O(3) content on upconversion intensity is discussed, and possible effect mechanisms are evaluated. The investigated results were conducing to increase upconversion luminescence efficiency of Tm(3+).  相似文献   

13.
Herein, a new aromatic carboxylate ligand, namely, 4-(dipyridin-2-yl)aminobenzoic acid (HL), has been designed and employed for the construction of a series of lanthanide complexes (Eu(3+) = 1, Tb(3+) = 2, and Gd(3+) = 3). Complexes of 1 and 2 were structurally authenticated by single-crystal X-ray diffraction and were found to exist as infinite 1D coordination polymers with the general formulas {[Eu(L)(3)(H(2)O)(2)]}(n) (1) and {[Tb(L)(3)(H(2)O)].(H(2)O)}(n) (2). Both compounds crystallize in monoclinic space group C2/c. The photophysical properties demonstrated that the developed 4-(dipyridin-2-yl)aminobenzoate ligand is well suited for the sensitization of Tb(3+) emission (Φ(overall) = 64%) thanks to the favorable position of the triplet state ((3)ππ*) of the ligand [the energy difference between the triplet state of the ligand and the excited state of Tb(3+) (ΔE) = (3)ππ* - (5)D(4) = 3197 cm(-1)], as investigated in the Gd(3+) complex. On the other hand, the corresponding Eu(3+) complex shows weak luminescence efficiency (Φ(overall) = 7%) due to poor matching of the triplet state of the ligand with that of the emissive excited states of the metal ion (ΔE = (3)ππ* - (5)D(0) = 6447 cm(-1)). Furthermore, in the present work, a mixed lanthanide system featuring Eu(3+) and Tb(3+) ions with the general formula {[Eu(0.5)Tb(0.5)(L)(3)(H(2)O)(2)]}(n) (4) was also synthesized, and the luminescent properties were evaluated and compared with those of the analogous single-lanthanide-ion systems (1 and 2). The lifetime measurements for 4 strongly support the premise that efficient energy transfer occurs between Tb(3+) and Eu(3+) in a mixed lanthanide system (η = 86%).  相似文献   

14.
Two novel silica based lanthanide complexes (Tb(a)(2) and Eu(a)(2)) were encapsulated into poly(acrylic acid) host. Both Tb(III) and Eu(III) containing hydrogels have typical and easily distinguished narrow line emissions occurring in the green and red region respectively. Particularly, the excitation wavelength for Eu complex can be extended into nearly visible light range (λ(ex) = 395 nm). Interestingly, we discover that these target materials not only exhibit selective emission response towards HSO(4)(-) (detection limit 10(-5) M) compared with CH(3)COO(-), F(-), Cl(-), Br(-) and I(-) but also give unique quenching to Cu(2+) (detection limit 10(-5) M) (tested cations: Cu(2+), Pd(2+), Cd(2+), Co(2+) and Mn(2+)). More importantly, this kind of materials can be recycled more than 10 times.  相似文献   

15.
Hopîrtean E  Liteanu C  Vlad R 《Talanta》1975,22(10-11):912-913
The paper reports the results obtained in the complexometric determination of Bi(3+), Fe(3+) and Cr(3+) by using an Hg(2+)-sensitive membrane-electrode for the end-point indication. The determination of Bi(3+) and Fe(3+) is performed after addition of mercuric complexonate from which these cations release Hg(2+) by means of which the electrode senses the equivalence point. In the case of Cr(3+) an excess of complexone is added and the surplus is titrated with a standard solution of Hg(2+) in the presence of the Hg(2+)-sensitive membrane-electrode.  相似文献   

16.
Dy(3+)-doped fluorophosphate glasses with composition (in mol%) (56-x/2)P(2)O(5)+17K(2)O+(15-x/2)BaO+8Al(2)O(3) + 4AlF(3)+ xDy(2)O(3), x=0.01, 0.05, 0.1, 1.0 and 2.0, have been prepared by melt quenching technique. The luminescence spectra and lifetimes of (4)F(9/2) level of Dy(3+) ions in these glasses have been measured using the 457.9 nm line of argon ion laser as an excitation source. The free-ion calculation and Judd-Ofelt analysis have been performed. The room temperature emission spectra corresponding to (4)F(9/2)-->(6)H(J) (J=7/2, 9/2, 11/2, 13/2 and 15/2) transitions of Dy(3+) ions were measured. The fluorescence decay from (4)F(9/2) level have been measured by monitoring the intense (4)F(9/2)-->(6)H(13/2) transition. The lifetime of the decay is obtained by taking the first e-folding times of the decay curves and is found to decrease with increase in Dy(3+) ions concentration due to concentration quenching. The decay curves are found to be perfectly single exponential for samples with low Dy(3+) ion concentration. The non-exponential decay curves observed for higher concentrations are well fitted to the Inokuti-Hirayama model for S=6, which indicates that the energy transfer between the donor and acceptor is of dipole-dipole nature. The energy transfer parameter and donor to acceptor interaction increases with Dy(3+) ions concentration due to increase of energy transfer from Dy(3+) (donor) to unexcited Dy(3+) (acceptor) ions.  相似文献   

17.
A cyclen (=1,4,7,10-tetraazacyclododecane) doubly functionalized with three carbamoylmethyl groups and one dansylaminoethyl (dansyl = 2-(5-(dimethylamino)-1-naphthalenesulfonyl) group (L(2) = 1-(2-(5-(dimethylamino)-1-naphthalenesulfonylamido)ethyl)-4,7,10-tris(carbamoylmethyl)-cyclen) was synthesized and characterized. Potentiometrtic pH titration and UV spectrophotometric titration of L(2) served to determine deprotonation of the pendant dansylamide (L(2) --> H(-1)L(2)) with a pK(a) value of 10.6, while the fluorometric titration disclosed a pK(a) value of 8.8 +/- 0.2, which was assigned to the dansyl deprotonation in the excited state. The 1:1 M(3+)-H(-1)L(2) complexation constants (log K(app) = 6.0 for Y(3+) and 5.2 for La(3+), where K(app)(M-H(-1)L(2)) = [M(3+)-H(-1)L(2)]/[M(3+)](free)[L(2)](free) (M(-1)) at pH 7.4) were determined by potentiometric pH titration and UV and fluorescence spectrophotometric titrations (excitation at 335 nm and emission at 520 nm) in aqueous solution (with I = 0.1 (NaNO(3))) and 25 degrees C. The X-ray structure analysis of the Y(3+)-H(-1)L complex showed nine-coordinated Y(3+) with four nitrogens of cyclen, three carbamoyl oxygens, and the deprotonated nitrogen and a sulfonyl oxygen of the dansylamide. The crystal data are as follow: formula C(28)H(49)N(11)O(13.5)SY (Y(3+)-H(-1)L(2) x 2(NO(3)(-)) x 2.5H(2)O), M(r) = 876.73, monoclinic, space group P2(1)/n (No. 14), a = 18.912(3) A, b = 17.042(3) A, c = 24.318(4) A, beta = 95.99(1) degrees, V = 7794(2) A(3), Z = 8, R1 = 0.099. Upon M(3+)-H(-1)L(2) complexation, the dansyl fluorescence greatly increased (8.6 and 3.8 times for Y(3+) and La(3+), respectively) in aqueous solution at pH 7.4. Other lanthanide ions also yielded Ln(3+)-H(-1)L(2) complexes with similar K(app) values, although all the dansyl fluorescences were weakly quenched. On the other hand, zinc(II) formed only a 1:1 Zn(2+)-L(2) complex at neutral pH with negligible fluorescence change. The X-ray crystal structure of the Zn(2+)-L(2) complex confirmed the pendant dansylamide being noncoordinating. The crystal data are as follow: formula C(28)H(51)N(11)O(14)SZn (Zn(2+)-L(2) x 2(NO(3)(-)) x 3H(2)O), M(r) = 863.22, monoclinic, space group C2/n (No. 15), a = 35.361(1) A, b = 13.7298(5) A, c = 18.5998(6) A, beta = 119.073(2) degrees, V = 7892.3(5) A(3), Z = 8, R1 = 0.084. Other divalent metal ions did not interact with L(2) at all (e.g., Mg(2+) and Ca(2+)) or interacted with L(2) with the dansyl fluorescence quenched (e.g., Cu(2+)).  相似文献   

18.
Electronic absorption and 8 T magnetic circular dichroism (MCD) spectra are reported for nitrate salts of Pt(AuPPh3)8(2+) and Au(AuPPh3)8(3+) in poly(methyl methacrylate) (PMM) thin films at 295 and 10 K in the vis-UV region from 1.6 to 3.6 microm(-1) (1 microm(-1) = 10(4) cm(-1). Enhanced resolution is observed at low temperature, especially for Pt(AuPPh3)8(2+), which emphasizes the differences in the nature of the low-energy excited configurations and states between Pt(AuPPh3)8(2+) and Au(AuPPh3)8(3+). The absorption and MCD spectra for Pt(AuPPh3)8(2+) are interpreted in terms of a combination of excitations from filled Pt 5d orbitals to empty Au framework 6s orbitals and intraframework Au8(2+) (IF) transitions, whereas the spectra for Au(AuPPh3)8(3+) are ascribed entirely to Au IF transitions.  相似文献   

19.
Photodissociation of the gas-phase tri-iodide anion, I3-, was investigated using photofragment time of flight (TOF) mass spectrometry combined with the core extraction method. An analysis of the TOF profiles provided the kinetic energy and angular distributions of photofragment ions and photoneutrals, from which the photoproduct branching fractions were determined in the excitation energy range of 3.26-4.27 eV. The measurement has revealed that (1) in the entire energy range investigated, three-body dissociation occurs preferentially as the "charge-asymmetric" process I-(1S)+I(2P3/2)+I(2P3/2) with the yield of approximately 30%-40%, where the excess charge is localized on the end atoms of the dissociating I3-, and that (2) two-body dissociation via the 3Piu(0u+)<--1Sigmag+(0g+) excitation proceeds as I-(1S)+I2(X 1Sigmag+)/I2(A 3Pi1u) or I(2P3/2)+I2-(X 2Sigmau+) with the yield of approximately 60%, while that via the 1Sigmau+(0u+)<--1Sigmag+(0g+) excitation alternatively as I*(2P1/2)+I2-(X 2Sigmau+) or I-(1S)+I2(B 3Piu) with the yield of approximately 60%. Ab initio calculations including spin-orbit configuration interactions were also performed to gain precise information on the potential energy surfaces relevant to the I3- photodissociation. The calculations have shown the presence of conical intersections and avoided crossings located along the symmetric stretch coordinate near the ground-state equilibrium geometry of I3-, which play key roles for the two-body and the three-body product branching. The nonadiabatic nature of the I3- photodissociation dynamics is discussed by combining the experimental findings and the ab initio results.  相似文献   

20.
Structures of the tri(amino)amine N(NH(2))(3)(2+) and the tri(azido)amine N(N(3))(3)(2+) dications were calculated at the density functional theory (DFT) B3LYP/6-311+G level. The tri(amino)amine dication (NH(2))(3)N(2+) (1) was found to be highly resonance stabilized with a high kinetic barrier for deprotonation. The structures of diamino(azido)amine dication (NH(2))(2)N(N(3))(2+) (2), amino(diazido)amine dication (NH(2))N(N(3))(2)(2+) (3), and tri(azido)amine dication (N(3))(3)N(2+) (4) were also found to be highly resonance stabilized. The structures and energetics of the related mixed amino(azido)ammonium ions (N(3))(x)N(NH(2))(4-x)(+) (x = 0-4) were also calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号