首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The influence of a non‐thermal plasma (NTP) on the gram‐negative bacteria Escherichia coli and Pseudomonas aeruginosa, the gram‐positive bacterium Staphylococcus epidermidis, and the yeast Candida albicans grown on agar or in the biofilm form was compared. NTP was produced by a DC cometary discharge. The biofilms were grown on the surface of Ti‐6Al‐4V alloy often used in the manufacture of prosthetic implants. The exposure by NTP not only inhibited the surface growth of microorganisms in agar cultures but also significantly suppressed the viability of bacteria and yeast in biofilms and prevented its re‐developed from persistent cells remaining in the lower layers of the biofilm. An almost complete prevention of biofilm re‐development was achieved in the case of S. epidermidis; other microorganisms displayed substantial lowering of biofilm biomass and its metabolic activity.  相似文献   

2.
Medical implants are prone to colonization by bacterial biofilms. Normally, surgery is required to replace the infected implant. One promising noninvasive modality is to destroy biofilms with high-intensity focused ultrasound. In our study, Pseudomonas aeruginosa biofilms were grown on implant-mimicking graphite disks in a flow chamber for 3 days prior to exposing them to ultrasound pulses. Exposure time at each treatment location was varied between 5, 15 and 30 s. Burst period was varied between 1, 3, 6 and 12 milliseconds (ms). The pulses were 20 cycles in duration at 1.1 MHz from a spherically focused transducer (f/1, 63 mm focal length), creating peak compressional and rarefactional pressures at the graphite disk surface of 30 and 13 MPa, respectively. P. aeruginosa were tagged with green fluorescent protein, and killed cells were visualized using propidium iodide before determining the extent of biofilm destruction. The exposure-induced temperature rise was measured to be less than 0.2 °C at the focus, namely the interface between graphite disk and water. Then, the temperature rise was measured at the focus between the graphite disk and a tissue-mimicking phantom to evaluate therapy safety. Two thresholds, of bacteria destruction increase and of complete bacteria removal, respectively, were identified to divide our eight exposure conditions. Results indicated that 30-s exposure and 6-ms pulse period were sufficient to destroy the biofilms. However, the 15-s exposure and 3-ms pulse period were viewed as optimum when considering exposure time, efficacy, and safety.  相似文献   

3.
In the present study, the structural, optical and antibacterial properties of ZnO thin films are reported. ZnO thin films are deposited on borosilicate glass substrates by radio frequency plasma enhanced chemical vapor deposition (PECVD) using oxygen as process gas. The crystallinity of the deposited films is improved upon annealing at 450 °C in air for 1.5 h and the polycrystalline nature of the films is further confirmed by selected area electron diffraction. The particle size of the annealed film (thickness 476 nm) is found to be ∼34 nm from the transmission electron microscopic observation. Energy dispersive X-ray spectrum indicates the stoichiometric deposition of ZnO films. The films are highly transparent (transmittance >85%) in the visible region of electromagnetic spectrum. The films exhibit excellent antibacterial effect towards the growth of Escherichia coli and Pseudomonas aeruginosa.  相似文献   

4.
Biofouling is one of the major impediments in the use of titanium in sea-water cooled condensers of power plants, which is otherwise an excellent material with respect to corrosion resistance. Raman microscopic experiments were carried out on biofilms grown on titanium surfaces to find out the chemical composition of complex extracellular polymeric substances (EPS) in the biofilm. Though the spectral resolution of normal Raman experiments on these systems was very poor, it was improved when micro-SERS experiments were carried out using mono and bimetallic Ag and Cu colloids. It was observed that spatial distribution of polysaccharides was higher than that of proteins in algae biofilms formed on titanium matrix. Similar experiments were performed on laboratory cultured bacterial films of Pseudomonas aeruginosa. It was evidenced that algal and bacterial biofilms on titanium can be clearly distinguished with the help of Raman mapping coupled with SERS technique using bimetallic Ag/Cu colloids.  相似文献   

5.
The coordination of Ti in borosilicate glasses have been studied by XRF, XPS and Raman spectroscopy. The results show that most of the Ti atoms are four-fold coordination in borosilicate glasses.  相似文献   

6.
Refractive index profiles of several types of silica-based low-loss optical fibres have been measured by the surface reflection technique. When polished samples are used inaccurate data are obtained. For germanium- and phosphorus-doped samples good results are obtained using samples prepared by fracturing the end of the fibre. For borosilicate fibres rapid changes due to atmospheric exposure result in inaccurate data.  相似文献   

7.
In numerous recent papers plasma chemistry of non equilibrium plasma sources operating at atmospheric pressure has been linked to plasma medical effects including sterilization. In this paper we present a study of the effectiveness of an atmospheric pressure plasma source, known as plasma needle, in inhibition of the growth of biofilm produced by methicillin resistant Staphylococcus aureus (MRSA). Even at the lowest powers the biofilms formed by inoculi of MRSA of 104 and 105 CFU have been strongly affected by plasma and growth in biofilms was inhibited. The eradication of the already formed biofilm was not achieved and it is required to go to more effective sources.  相似文献   

8.
Properties of pristine, plasma modified, and etched (by water and methanol) polytetrafluoroethylene (PTFE) were studied. Gold nanolayers sputtered on this modified PTFE have been also investigated. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Degradation of polymer chains was examined by etching of plasma modified PTFE in water or methanol. The amount of ablated and etched layer was measured by gravimetry. In the next step the pristine, plasma modified, and etched PTFE was sputtered with gold. Changes in surface morphology were observed using atomic force microscopy. Chemical structure of modified polymers was characterized by X-ray photoelectron spectroscopy (XPS). Surface chemistry of the samples was investigated by electrokinetic analysis. Sheet resistance of the gold layers was measured by two-point technique. The contact angle of the plasma modified PTFE decreases with increasing exposure time. The PTFE amount, ablated by the plasma treatment, increases with the plasma exposure time. XPS measurements proved that during the plasma treatment the PTFE macromolecular chains are degraded and oxidized and new –C–O–C–, –C=O, and –O–C=O groups are created in modified surface layer. Surface of the plasma modified PTFE is weakly soluble in methanol and intensively soluble in water. Zeta potential and XPS shown dramatic changes in PTFE surface chemistry after the plasma exposure, water etching, and gold deposition. When continuous gold layer is formed a rapid decrease of the sheet resistance of the gold layer is observed.  相似文献   

9.
玻璃固化体是用来固化放射性废物的硅酸盐。作为放射性废物处理的第一道工程屏障,它的耐辐照性能尤其引人注目。本工作使用硼硅酸盐玻璃模拟玻璃固化体材料,用不同剂量的γ射线辐照硼硅酸盐玻璃模拟天然放射性对固化体的辐照损伤。通过测量和分析辐照后硼硅酸盐玻璃的吸收光谱,证实了辐照后在玻璃中产生了E'缺陷,非桥氧空位色心、过氧自由基以及过桥氧联接等缺陷。此外,还得出了不同微观结构随吸收剂量的演化关系。对于辐照后产生的缺陷,它们的浓度都随吸收剂量的增加而增大。同时,发现玻璃在辐照后其吸收光谱的带隙随着剂量的增加而逐渐变窄;而当吸收剂量大于等于105 Gy时,玻璃的带隙则达到饱和值。Vitrification is one kind of silicates which is used for immobilization of high-level waste (HLW). As the first engineered barrier of HLW disposition, its anti-irradiation characteristic is particularly noticeable. Vitrification is replaced by borosilicate glass to investigate radiation effect, and the irradiation damage generated by natural radioactivity in vitrification is simulated by different doses gamma rays on borosilicate glass. By measuring and analyzing the absorption spectrum of irradiated borosilicate glasses, it is confirmed that E'defect, non-bridging oxygen hole center, peroxy dangling bond and bridge oxygen link, etc. are induced in borosilicate glass after irradiation. Furthermore, the relations between the defects and absorbed doses are shown. For the concentrations of these defects induced by irradiation, all of them increase with absorbed dose. Meanwhile, absorption band gap in borosilicate glass after irradiation decreases with absorbed dose and the band gap becomes saturated when absorbed dose is equal to or greater than 105 Gy.  相似文献   

10.
Mathematical models are developed to calculate the temperatures, pressures and stresses during laser shock processing for time-modulated (ramp-up, ramp-down and rectangular) laser pulses. Three different shock processing configurations are also considered: non-ablative exposure, ablative exposure and confined ablation with coating. The results for iron show that the plasma pressure reaches an average value of 9 GPa in direct ablation configuration and plays a dominant role for all three types of laser pulses. In the case of confined geometry, the plasma pressure reaches an average value of 20 GPa. All calculated pressures and stresses exceed the yield strength of the workpiece, indicating plastic deformation. It is also shown that pulses with short rise times yield higher plasma pressures.  相似文献   

11.
The small-angle x-ray scattering method has been applied to study fireballs ejected into the air from molten hot spots in borosilicate glass by localized microwaves [V. Dikhtyar and E. Jerby, Phys. Rev. Lett. 96 045002 (2006)10.1103/PhysRevLett.96.045002]. The fireball's particle size distribution, density, and decay rate in atmospheric pressure were measured. The results show that the fireballs contain particles with a mean size of approximately 50 nm with average number densities on the order of approximately 10(9). Hence, fireballs can be considered as a dusty plasma which consists of an ensemble of charged nanoparticles in the plasma volume. This finding is likened to the ball-lightning phenomenon explained by the formation of an oxidizing particle network liberated by lightning striking the ground [J. Abrahamson and J. Dinniss, Nature (London) 403, 519 (2000)10.1038/35000525].  相似文献   

12.
A series of binary borosilicate glasses prepared by the sol-gel method are shown to be bioactive. Tetraethyl orthosilicate (TEOS) and trimethylborate (TMB) in acidic medium are used to prepare xB2O3·(1−x)SiO2 glass systems for x=0.045-0.167. The formation of a layer of apatite-like mineral on the glass surface becomes apparent after soaking in simulated body fluid for 48 h. We have measured the 11B-11B homonuclear second moments of the borosilicate glasses and inferred that no macroscopic phase separation occurred in our glasses. The 11B chemical shift data also show that the formation of clustered boroxol rings is negligible in our glass system. Although the bioactivity of our borosilicate glasses is less than that of CaO-SiO2 sol-gel glasses, these simple binary systems could be taken as reference glass systems for the search of new bioactive borosilicate glasses.  相似文献   

13.
玻璃固化体作为放射性废物地质处置的第一道安全屏障,它的耐辐照性能研究至关重要.玻璃固化体主要网络结构硅氧四面体与石英玻璃的硅氧四面体是一致的,所以这里用石英玻璃代替玻璃固化体作为研究对象.本文采用Xe离子在相同条件下辐照石英玻璃和硼硅酸盐玻璃.利用纳米压痕技术和椭圆偏振仪表征了辐照前后样品的硬度、模量以及折射率的变化情况.结果表明:硼硅酸盐玻璃和石英玻璃的硬度均随着辐照剂量的增大而减小,硼硅酸盐玻璃的模量随着辐照剂量的增大而减小;石英玻璃的模量随着辐照剂量的增大而增大.模量的变化可能和密度的变化有关,这点与折射率的结果相符.  相似文献   

14.
Infrared to green up-conversion emissions centered at the wavelengths of about 524 and 550 nm of the Er3+-Yb3+ codoped borosilicate glass are recorded,using a 978 nm semiconductor laser diode(LD) as an excitation source.The fluorescence intensity ratio(FIR) of the green up-conversion emissions at about 524 and 550 nm in the Er3+-Yb3+ codoped borosilicate glass has been studied as a function of temperature over the temperature range of 295-873 K.The maximum sensitivity and the temperature resolution derived ...  相似文献   

15.
The cytotoxic effect of positively charged polystyrene latex nanoparticles (PSL NPs) was compared between planktonic bacterial cells and bacterial biofilms using confocal laser scanning microscopy, atomic force microscopy, and a colony counting method. Pseudomonas fluorescens, which is commonly used in biofilm studies, was employed as the model bacteria. We found that the negatively charged bacterial surface of the planktonic cells was almost completely covered with positively charged PSL NPs, leading to cell death, as indicated by the NP concentration being greater than that required to achieve single layer coverage. In addition, the relationship between surface coverage and cell viability of P. fluorescens cells correlated well with the findings in other bacterial cells (Escherichia coli and Lactococcus lactis). However, most of the bacterial cells that formed the biofilm were viable despite the positively charged PSL NPs being highly toxic to planktonic bacterial cells. This indicated that bacterial cells embedded in the biofilm were protected by self-produced extracellular polymeric substances (EPS) that provide resistance to antibacterial agents. In conclusion, mature biofilms covered with EPS exhibit resistance to NP toxicity as well as antibacterial agents.  相似文献   

16.
李欣  赵强  郝建红  董志伟  薛碧曦 《强激光与粒子束》2020,32(2):025024-1-025024-6
作为航天器电源系统的重要组成部分,太阳电池需要更高的转换效率和可靠性以及更长的使用寿命。通过在太阳电池表面覆盖抗辐照玻璃盖片,可以增强太阳电池对粒子辐射的防护,延长太阳电池的服役寿命,使航天器获得可靠的能源供应。硼硅酸盐玻璃就是一种理想的太阳电池玻璃盖片材料。采用蒙特卡罗方法,结合SRIM软件模拟研究质子辐照硼硅酸盐玻璃的损伤物理机理。基于粒子与物质相互作用的理论以及基本公式,通过分析不同入射能量的质子在硼硅酸盐玻璃中的阻止本领、电离能损、位移能损、空位的产生情况,对辐照损伤的物理机制进行研究。结果表明:能量为30~120 keV的质子辐照损伤主要发生在硼硅酸盐玻璃表面;质子沉积、空位分布等均为Bragg峰型分布;电离能损是能量损失的主要部分,随入射能量的增加而增大,导致电子的电离和激发;位移能损在玻璃内部随能量降低而增大,导致硼、氧和硅等空位缺陷的产生;电离效应和缺陷的产生是硼硅酸盐玻璃色心形成的重要原因。  相似文献   

17.
The antibacterial activity of gas discharge plasma has been studied for quiet some time. However, high biofilm inactivation activity of plasma was only recently reported. Studies indicate that the etching effect associated with plasmas generated represent an undesired effect, which may cause live bacteria relocation and thus contamination spreading. Meanwhile, the strong etching effects from these high power plasmas may also alter the surface chemistry and affect the biocompatibility of biomaterials. In this study, we examined the efficiency and effectiveness of low power gas discharge plasma for biofilm inactivation and removal. Among the three tested gases, oxygen, nitrogen, and argon, discharge oxygen demonstrated the best anti-biofilm activity because of its excellent ability in killing bacteria in biofilms and mild etching effects. Low power discharge oxygen completely killed and then removed the dead bacteria from attached surface but had negligible effects on the biocompatibility of materials. DNA left on the regenerated surface after removal of biofilms did not have any negative impact on tissue cell growth. On the contrary, dramatically increased growth was found for these cells seeded on regenerated surfaces. These results demonstrate the potential applications of low power discharge oxygen in biofilm treatments of biomaterials and indwelling device decontaminations.  相似文献   

18.
制备了Ti4+掺杂硼硅酸盐玻璃,根据玻璃样品的差热分析(DTA)进行微晶化处理,测试了Ti4+掺杂硼硅酸盐微晶玻璃的X射线衍射(XRD)谱、透射电镜(TEM)图像、吸收光谱和发射光谱.根据Scherrer公式计算了BaYF5微晶的平均晶粒尺寸并与TEM图像进行比对.在紫外光激发下,观察到Ti4+掺杂BaYF5硼硅酸盐微...  相似文献   

19.
Nanocrystalline zinc films were deposited on gold coated borosilicate glass substrates by thermal evaporation method using zinc powders as the source material and then treated with argon plasma at various temperatures. From X-ray diffraction study, the as-deposited films are found to be metallic Zn and polycrystalline in nature. The crystalline nature improves with the increase of temperature up to 200 °C and decreases with the further increase of temperature to 300 °C. The binding energy observed for Zn 2p3/2, and the binding energy separation between Zn 2p3/2 and Zn 2p1/2 in the X-ray photoelectron spectrum indicate that the films are metallic zinc films. Transmission electron microscopic study shows hexagonal shaped grains having size ∼58 nm upon treatment with Ar plasma. It is clearly shown the grain growth and distinct grain boundary with the increase in temperature. The average Young's modulus (E) and hardness (H) are measured to be 84 GPa and 4.0 GPa for as-deposited film, whereas 98 GPa and 5.8 GPa for plasma treated film at 200 °C. The enhancement in mechanical properties is attributed to improvement in crystalline nature of the film and better interlinking between grains and boundaries.  相似文献   

20.
Various barium strontium titanate borosilicate glasses were prepared by a rapid melt-quench technique. Spectroscopic studies have been carried out on investigated glasses for their structural information. Infrared and Raman spectroscopic studies showed that these glasses are formed by glass-forming network of borate and silicate as well as network modifiers in the form of cations of alkaline earth atoms. The borate and silicate networks are modified by barium, strontium, titanium, and iron cations in glass matrix. The network of triborate unit is modified in tetraborate unit by adding ferric oxide in a glassy matrix. The optical studies are performed by ultraviolet-visible spectroscopy and it confirms that the band gap decreases with increase in the concentration of ferric oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号