首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flash photolysis resonance fluorescence technique has been used to measure the rate constant for the reaction over the temperature range of 250–370 K. The present results are in excellent agreement with three very recent studies, and the combined data set can been used to derive the expression similar to that currently used in atmospheric modeling applications. A summary of our computer simulation of this reaction system is presented. The results of the computations indicate the absence of secondary reaction complications in the present work while revealing significant problems in the earlier (pre-1980) studies of the title reaction.  相似文献   

2.
The motivation for the present study comes from the preceding paper where it is suggested that accepted rate constants for OH + NO2 --> NO + HO2 are high by approximately 2. This conclusion was based on a reevaluation of heats of formation for HO2, OH, NO, and NO2 using the Active Thermochemical Table (ATcT) approach. The present experiments were performed in C2H5I/NO2 mixtures, using the reflected shock tube technique and OH-radical electronic absorption detection (at 308 nm) and using a multipass optical system. Time-dependent profile decays were fitted with a 23-step mechanism, but only OH + NO2, OH + HO2, both HO2 and NO2 dissociations, and the atom molecule reactions, O + NO2 and O + C2H4, contributed to the decay profile. Since all of the reactions except the first two are known with good accuracy, the profiles were fitted by varying only OH + NO2 and OH + HO2. The new ATcT approach was used to evaluate equilibrium constants so that back reactions were accurately taken into account. The combined rate constant from the present work and earlier work by Glaenzer and Troe (GT) is k(OH+NO2) = 2.25 x 10(-11) exp(-3831 K/T) cm3 molecule(-1) s(-1), which is a factor of 2 lower than the extrapolated direct value from Howard but agrees well with NO + HO2 --> OH + NO2 transformed with the updated equilibrium constants. Also, the rate constant for OH + HO2 suitable for combustion modeling applications over the T range (1200-1700 K) is (5 +/- 3) x 10(-11) cm3 molecule(-1) s(-1). Finally, simulating previous experimental results of GT using our updated mechanism, we suggest a constant rate for k(HO2+NO2) = (2.2 +/- 0.7) x 10(-11) cm3 molecule(-1) s(-1) over the T range 1350-1760 K.  相似文献   

3.
We report variational transition‐state theory calculations for the OH + O3→ HO2 + O2 reaction based on the recently reported double many‐body expansion potential energy surface for ground‐state HO4 [Chem Phys Lett 2000, 331, 474]. The barrier height of 1.884 kcal mol?1 is comparable to the value of 1.77–2.0 kcal mol?1 suggested by experimental measurements, both much smaller than the value of 2.16–5.11 kcal mol?1 predicted by previous ab initio calculations. The calculated rate constant shows good agreement with available experimental results and a previous theoretical dynamics prediction, thus implying that the previous ab initio calculations will significantly underestimate the rate constant. Variational and tunneling effects are found to be negligible over the temperature range 100–2000 K. The O1? O2 bond is shown to be spectator like during the reactive process, which confirms a previous theoretical dynamics prediction. © 2007 Wiley Periodicals, Inc. 39: 148–153, 2007  相似文献   

4.
The reaction of OH radicals with CS2 has been investigated by the application of Fourier transform infrared spectroscopy using both photolytic and nonphotolytic competitive techniques in a 420-L reaction chamber at different pressures over the temperature range of 264–293 K. The measured effective rate constant was found to be dependent on total pressure, temperature, and the mole fraction of O2 present in the system. The products of the reaction were found to be COS and SO2 with one molecule of each being formed for every reacted CS2. A value of (2.7 ± 0.6) × 10?12 cm3/molecule·s was obtained as effective rate constant for the reaction at 293 K in 760 torr of synthetic air.  相似文献   

5.
This article describes an ab initio investigation on the potential surfaces for one of the simplest hydrogen atom abstraction reactions, that is, HO + H2O <--> H2O + OH. In accord with the findings in the previously reported theoretical investigations, two types of the hydrogen-bonding complexes [HOH--OH] and [H2O--HO] were located on the potential energy surface. The water molecule acts as a hydrogen donor in the [HOH--OH] complex, while the OH radical acts as a hydrogen donor in the [H2O--HO] complex. The energy evaluations at the MP2(FC) basis set limit, as well as those through the CBS-APNO procedure, have provided estimates for enthalpies of association for these complexes at 298 K as -2.1 approximately -2.3 and -4.1 approximately -4.3 kcal/mol, respectively. The IRC calculations have suggested that the [H2O--HO] complex should be located along the reaction coordinate for the hydrogen abstraction. Our best estimate for the classical barrier height for the hydrogen abstraction is 7.8 kcal/mol, which was obtained from the CBS-APNO energy evaluations. After fitting the CBS-APNO potential energy curve to a symmetrical Eckart function, the rate constants were calculated by using the transition state theory including the tunneling correction. Our estimates for the Arrhenius parameters in the temperature region from 300 to 420 K show quite reasonable agreement with the experimentally derived values.  相似文献   

6.
The kinetics of the glyoxal + HO(2) reaction have been investigated using computational chemistry and statistical reaction rate theory techniques, with consideration of a novel pathway that results in the conversion of HO(2) to OH. Glyoxal is shown to react with HO(2) to form an α-hydroxyperoxy radical with additional α-carbonyl functionality. Intramolecular H atom abstraction from the carbonyl moiety proceeds with a relatively low barrier, facilitating decomposition to OH + CO + HC(O)OH (formic acid). Time-dependent master equation simulations demonstrate that direct reaction to form OH is relatively slow at ambient temperature. The major reaction product is predicted to be collisionally deactivated HC(OH)(OO)CHO, which predominantly dissociates to reform the reactants under low-NO(x) conditions. The mechanism described here for the conversion of OH to HO(2) is available to a diverse range of carbonyls, including methylglyoxal, glycolaldehyde, hydroxyacetone, and glyoxylic acid, and energy surfaces are reported for the reaction of these species with HO(2).  相似文献   

7.
The production of OH and HO(2) in Cl-initiated oxidation of cyclohexane has been measured using pulsed-laser photolytic initiation and continuous-laser absorption detection. The experimental data are modeled by master equation calculations that employ new G2(MP2)-like ab initio characterizations of important stationary points on the cyclo-C(6)H(11)O(2) surface. These ab initio calculations are a substantial expansion on previously published characterizations, including explicit consideration of conformational changes (chair-boat, axial-equatorial) and torsional potentials. The rate constants for the decomposition and ring-opening of cyclohexyl radical are also computed with ab initio based transition state theory calculations. Comparison of kinetic simulations based on the master equation results with the present experimental data and with literature determinations of branching fractions suggests adjustment of several transition state energies below their ab initio values. Simulations with the adjusted values agree well with the body of experimental data. The results once again emphasize the importance of both direct and indirect components of the kinetics for the production of both HO(2) and OH in radical + O(2) reactions.  相似文献   

8.
The high-temperature oxidation of formaldehyde in the presence of carbon monoxide was investigated to determine the rate constant of the reaction HO2 + CO ? CO2 + OH (10). In the temperature range of 878–952°K from the initial parts of the kinetic curves of the HO2 radicals and CO2 accumulation at small extents of the reaction, when the quantity of the reacted formaldehyde does not exceed 10%, it was determined that the rate constant k10 is A computer program was used to solve the system of differential equations which correspond to the high-temperature oxidation of formaldehyde in the presence of carbon monoxide. The computation confirmed the experimental results. Also discussed are existing experimental data related to the reaction of HO2 with CO.  相似文献   

9.
The kinetics and absolute rate constants of the gas-phase reaction of the hydroxymethyl radical (CH2OH) with molecular oxygen have been studied using laser photolysis/near-IR absorption spectroscopy. The reaction was tracked by monitoring the time-dependent changes in the production of the hydroperoxy radical (HO2) concentration. For sensitive detection of HO2, two-tone frequency modulation absorption spectroscopy was used in combination with a Herriott-type optical multipass absorption cell. Rate constants were determined as a function of temperature (236 K相似文献   

10.
The secondary formation of HO(2) radicals following OH + aromatic hydrocarbon reactions in synthetic air under normal pressure and temperature was investigated in the absence of NO after pulsed production of OH radicals. OH and HO(x) (=OH + HO(2)) decay curves were recorded using laser-induced fluorescence after gas-expansion. The prompt HO(2) yields (HO(2) formed without preceding NO reactions) were determined by comparison to results obtained with CO as a reference compound. This approach was recently introduced and applied to the OH + benzene reaction and was extended here for a number of monocyclic aromatic hydrocarbons. The measured HO(2) formation yields are as follows: toluene, 0.42 ± 0.11; ethylbenzene, 0.53 ± 0.10; o-xylene, 0.41 ± 0.08; m-xylene, 0.27 ± 0.06; p-xylene, 0.40 ± 0.09; 1,2,3-trimethylbenzene, 0.31 ± 0.06; 1,2,4-trimethylbenzene, 0.37 ± 0.09; 1,3,5-trimethylbenzene, 0.29 ± 0.08; hexamethylbenzene, 0.32 ± 0.08; phenol, 0.89 ± 0.29; o-cresol, 0.87 ± 0.29; 2,5-dimethylphenol, 0.72 ± 0.12; 2,4,6-trimethylphenol, 0.45 ± 0.13. For the alkylbenzenes HO(2) is the proposed coproduct of phenols, epoxides, and possibly oxepins formed in secondary reactions with O(2). In most product studies the only quantified coproducts were phenols whereas only a few studies reported yields of epoxides. Oxepins have not been observed so far. Together with the yields of phenols from other studies, the HO(2) yields determined in this work set an upper limit to the combined yields of epoxides and oxepins that was found to be significant (≤0.3) for all investigated alkylbenzenes except m-xylene. For the hydroxybenzenes the currently proposed HO(2) coproducts are dihydroxybenzenes. For phenol and o-cresol the determined HO(2) yields are matching the previously reported dihydroxybenzene yields, indicating that these are the only HO(2) forming reaction channels. For 2,5-dimethylphenol and 2,4,6-trimethylphenol no complementary product studies are available.  相似文献   

11.
The kinetics of the hydrogen abstraction from H2O2 by ?OH has been modeled with MP2/6‐31G*//MP2/6‐31G*, MP2‐SAC//MP2/6‐31G*, MP2/6‐31+G**//MP2/6‐31+G**, MP2‐SAC// MP2/6‐31+G**, MP4(SDTQ)/6‐311G**//MP2/6‐31G*, CCSD(T)/6‐31G*//CCSD(T)/6‐31G*, CCSD(T)/6‐31G**//CCSD(T)/6‐31G**, CCSD(T)/6‐311++G**//MP2/6‐31G* in the gas phase. MD simulations have been used to generate initial geometries for the stationary points along the potential energy surface for hydrogen abstraction from H2O2. The effective fragment potential (EFP) has been used to optimize the relevant structures in solution. Furthermore, the IEFPCM model has been used for the supermolecules generated via MD calculations. IEFPCM/MP2/6‐31G* and IEFPCM/CCSD(T)/6‐31G* calculations have also been performed for structures without explicit water molecules. Experimentally, the rate constant for hydrogen abstraction by ?OH drops from 1.75 × 10?12 cm3 molecule?1 s?1 in the gas phase to 4.48 × 10?14 cm3 molecule?1 s?1 in solution. The same trend has been reproduced best with MP4 (SDTQ)/6‐311G**//MP2/6‐31G* in the gas phase (0.415 × 10?12 cm3 molecule?1 s?1) and with EFP (UHF/6‐31G*) in solution (3.23 × 10?14 cm3 molecule?1 s?1). © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 502–514, 2005  相似文献   

12.
The rate coefficient for the reaction has been determined in mixtures of nitric acid (HNO3) and argon in incident shock wave experiments. Quantitative OH time-histories were obtained by cw narrow-linewidth uv laser absorption of the R1(5) line of the A2 σ+X2 Πi (0,0) transition at 32606.56 cm?1 (vacuum). The experiments were conducted over the temperature range 1050–2380 K and the pressure range 0.18–0.60 atm. The second-order rate coefficient was determined to be with overall uncertainties of +11%, ?16% at high temperatures and +25%, ?22% at low temperatures. By incorporating data from previous investigations in the temperature range 298–578 K, the following expression is determined for the temperature range 298–2380 K © 1994 John Wiley & Sons, Inc.  相似文献   

13.
《Chemphyschem》2003,4(8):843-847
The atmospheric reaction (1) OH + O3→HO2 + O2 was investigated theoretically by using MP2, QCISD, QCISD(T), and CCSD(T) methods with various basis sets. At the highest level of theory, namely, QCISD, the reaction is direct, with only one transition state between reactants and products. However, at the MP2 level, the reaction proceeds through a two‐step mechanism and shows two transition states, TS1 and TS2 , separated by an intermediate, Int . The different methodologies employed in this paper consistently predict the barrier height of reaction (1) to be within the range 2.16–5.11 kcal mol?1, somewhat higher than the experimental value of 2.0 kcal mol?1.  相似文献   

14.
We applied our recently developed protocol of the conductorlike continuum model of solvation to describe the title reaction in aqueous solution. The model has the unique feature of the molecular cavity being dependent on the atomic charges in the solute and can be extended naturally to transition states and reaction pathways. It was used to calculate the reaction energetics and reaction rate in solution for the title reaction. The rate of reaction calculated using canonical variational transition state theory in the context of the equilibrium solvation path approximation, and including correction for tunneling through the small curvature approximation, was found to be 3.6 x 10(6) M(-1) s(-1), significantly slower than in the gas phase in accord with experiment. These results suggest that the present protocol of the conductorlike continuum model of solvation with the charge-dependent cavity definition captures qualitatively and quantitatively the solvation effects at transition states and allows for quantitative estimates of reaction rates in solutions.  相似文献   

15.
We have studied the O + OH ↔ O2 + H reaction on Varandas's DMBE IV potential using a variety of statistical methods, all involving the RRKM assumption for the HO2* complex. Comparing our results using microcanonical variational transition‐state theory (μVT) with those using microcanonical/fixed‐J variational transition‐state theory (μVT‐J), we find that the effect of angular momentum conservation on the rate coefficient is imperceptible up to a temperature of about 700 K. Above 700 K angular momentum conservation increasingly reduces the rate coefficient, but only by approximately 21% even at 5000 K. Comparing our μVT‐J calculations with the quasi‐classical trajectory (QCT) results of Miller and Garrett [ 1 ], we confirm their conclusion that non‐RRKM dynamics of the HO2* complex reduces the rate coefficient by about a factor of 2 independent of temperature. Our calculations of k(c), the rate coefficient for HO2* formation from O + OH, are in excellent agreement with the QCT results of Miller and Garrett. Although the differences are not large, we find kCVT(c) > kμVT(c) > kμVT‐J(c) > kQCT(c), where CVT stands for canonical variational transition‐state theory. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 753–756, 1999  相似文献   

16.
Canonical rate constants for both the forward and reverse H + O(2) <--> O + OH reactions were calculated using a quantum wave packet-based statistical model on the DMBE IV potential energy surface of Varandas and co-workers. For these bimolecular reactions, the results show reasonably good agreement with available experimental and theoretical data up to 1500 K. In addition, the capture rate for the H + O(2) --> HO(2) addition reaction at the high-pressure limit was obtained on the same potential using a time-independent quantum capture method. Excellent agreement with experimental and quasi-classical trajectory results was obtained except for at very low temperatures, where a reaction threshold was found and attributed to the centrifugal barrier of the orbital motion.  相似文献   

17.
We present a direct ab initio dynamics study on the hydrogen abstraction reaction CH2O + HO2 --> CHO + H2O2, which is predicted to have four possible reaction channels caused by different attacking orientations of HO2 radical to CH2O. The structures and frequencies at the stationary points and the points along the minimum energy paths (MEPs) of the four reaction channels are calculated at the B3LYP/cc-pVTZ level of theory. Energetic information of stationary points and the points along the MEPs is further refined by means of some single-point multilevel energy calculations (HL). The rate constants of these channels are calculated using the improved canonical variational transition-state theory with the small-curvature tunneling correction (ICVT/SCT) method. The calculated results show that, in the whole temperature range, the more favorable reaction channels are Channels 1 and 3. The total ICVT/SCT rate constants of the four channels at the HL//B3LYP/cc-pVTZ level of theory are in good agreement with the available experiment data over the measured temperature ranges, and the corresponding three-parameter expression is k(ICVT/SCT) = 3.13 x 10(-20) T(2.70) exp(-11.52/RT) cm3 mole(-1) s(-1) in the temperature range of 250-3000 K. Additionally, the flexibility of the dihedral angle of H2O2 is also discussed to explain the different experimental values.  相似文献   

18.
The rate constant for the reaction (1), Cl + HO2 → HCl + O2, was measured using molecular modulation spectrometry to investigate HO2 radical kinetics in the modulated photolysis of Cl2? ;H2? O2 mixtures at 760 torr pressure. HO2 was monitored directly in absorption at 220 nm, and k1 was determined from computer simulations of the observed kinetic behavior of HO2, using a simple chemical model. The results gave where k4 is the rate constant for the reaction of Cl with H2. A consensus value of k4 gave k1 = 6.9 × 10?11 cm3/molecule sec, independent of temperature in the range of 274–338 K with an overall uncertainty of ±50%. The relative importance of reaction (1) for the conversion of Cl to HCl in the stratosphere is discussed briefly.  相似文献   

19.
The reaction of HO2 with C2H5O2 has been studied using the density functional theory (B3LYP) and the coupled-cluster theory [CCSD(T)]. The reaction proceeds on the triplet potential energy surface via hydrogen abstraction to form ethyl hydroperoxide and oxygen. On the singlet potential energy surface, the addition-elimination mechanism is revealed. Variational transition state theory is used to calculate the temperature-dependent rate constants in the range 200-1000 K. At low temperatures (e.g., below 300 K), the reaction takes place predominantly on the triplet surface. The calculated low-temperature rate constants are in good agreement with the experimental data. As the temperature increases, the singlet reaction mechanism plays more and more important role, with the formation of OH radical predominantly. The isotope effect of the reaction (DO2 + C2D5O2 vs HO2 + C2H5O2) is negligible. In addition, the triplet abstraction energetic routes for the reactions of HO2 with 11 alkylperoxy radicals (CnHmO2) are studied. It is shown that the room-temperature rate constants have good linear correlation with the activation energies for the hydrogen abstraction.  相似文献   

20.
The mechanism for the O + CH2OH reaction was investigated by various ab initio quantum chemistry methods. For the chemical activation mechanism, that is, the addition/elimination path, the couple-cluster methods including CCSD and CCSD(T) were employed with the cc-pVXZ (X = D, T, Q, 5) basis sets. For the abstraction channels, multireference methods including CASSCF, CASPT2, and MRCISD were used with the cc-pVDZ and cc-pVTZ basis sets. It has been shown that the production of H + HCOOH is the major channel in the chemical activation mechanism. The minor channels include HCO + H2O and OH + CH2O. The hydrogen abstraction by an O atom from the CH2OH radical produces either OH + CH2O or OH + HCOH. Moreover, the two abstraction reactions are essentially barrierless processes. The rate constants for the association of O with CH2OH have been calculated using the flexible transition state theory. A weak negative temperature dependence of the rate constants is found in the range 250-1000 K. Furthermore, it is estimated that the abstraction processes also play an important role in the O + CH2OH reaction. Additionally, the falloff behavior for the OCH2OH --> H + HCOOH reaction has been investigated. The present theoretical results are compared to the experimental measurements to understand the mechanism and kinetic behavior of the O + CH2OH reaction and the unimolecular reaction of the OCH2OH radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号