首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The existence of a pullback attractor is established for the nonautonomous dynamical system generated by the weak solutions of a semilinear heat equation on time-varying domains with homogeneous Dirichlet boundary conditions. It is assumed that the spatial domains Ot in RN are obtained from a bounded base domain O by a C2-diffeomorphism, which is continuously differentiable in the time variable, and are contained, in the past, in a common bounded domain.  相似文献   

2.
In this note, we investigate the regularity of the extremal solution u? for the semilinear elliptic equation −△u+c(x)⋅∇u=λf(u) on a bounded smooth domain of Rn with Dirichlet boundary condition. Here f is a positive nondecreasing convex function, exploding at a finite value a∈(0,∞). We show that the extremal solution is regular in the low-dimensional case. In particular, we prove that for the radial case, all extremal solutions are regular in dimension two.  相似文献   

3.
The Dirichlet problem is considered for the heat equation ut=auxx, a>0 a constant, for (x,t)∈[0,1]×[0,T], without assuming any compatibility condition between initial and boundary data at the corner points (0,0) and (1,0). Under some smoothness restrictions on the data (stricter than those required by the classical maximum principle), weak and strong supremum and infimum principles are established for the higher-order derivatives, ut and uxx, of the bounded classical solutions. When compatibility conditions of zero order are satisfied (i.e., initial and boundary data coincide at the corner points), these principles allow to estimate the higher-order derivatives of classical solutions uniformly from below and above on the entire domain, except that at the two corner points. When compatibility conditions of the second order are satisfied (i.e., classical solutions belong to on the closed domain), the results of the paper are a direct consequence of the classical maximum and minimum principles applied to the higher-order derivatives. The classical principles for the solutions to the Dirichlet problem with compatibility conditions are generalized to the case of the same problem without any compatibility condition. The Dirichlet problem without compatibility conditions is then considered for general linear one-dimensional parabolic equations. The previous results as well as some new properties of the corresponding Green functions derived here allow to establish uniformL1-estimates for the higher-order derivatives of the bounded classical solutions to the general problem.  相似文献   

4.
Let M be a compact Riemannian manifold without boundary. Consider the porous media equation , u(0)=u0Lq, ? being the Laplace-Beltrami operator. Then, if q?2∨(m-1), the associated evolution is Lq-L regularizing at any time t>0 and the bound ‖u(t)‖?C(u0)/tβ holds for t<1 for suitable explicit C(u0),γ. For large t it is shown that, for general initial data, u(t) approaches its time-independent mean with quantitative bounds on the rate of convergence. Similar bounds are valid when the manifold is not compact, but u(t) approaches u≡0 with different asymptotics. The case of manifolds with boundary and homogeneous Dirichlet, or Neumann, boundary conditions, is treated as well. The proof stems from a new connection between logarithmic Sobolev inequalities and the contractivity properties of the nonlinear evolutions considered, and is therefore applicable to a more abstract setting.  相似文献   

5.
We study the following complex Ginzburg-Landau equation with cubic nonlinearity on for under initial and Dirichlet boundary conditions u(x,0)=h(x) for x∈Ω, u(x,t)=Q(x,t) on ∂Ω where h,Q are given smooth functions. Under suitable conditions, we prove the existence of a global solution in H1. Further, this solution approaches to the solution of the NLS limit under identical initial and boundary data as a,b→0+.  相似文献   

6.
We study qualitative and quantitative properties of local weak solutions of the fast p-Laplacian equation, tupu, with 1<p<2. Our main results are quantitative positivity and boundedness estimates for locally defined solutions in domains of Rn×[0,T]. We combine these lower and upper bounds in different forms of intrinsic Harnack inequalities, which are new in the very fast diffusion range, that is when 1<p?2n/(n+1). The boundedness results may be also extended to the limit case p=1, while the positivity estimates cannot.We prove the existence as well as sharp asymptotic estimates for the so-called large solutions for any 1<p<2, and point out their main properties.We also prove a new local energy inequality for suitable norms of the gradients of the solutions. As a consequence, we prove that bounded local weak solutions are indeed local strong solutions, more precisely .  相似文献   

7.
We investigate qualitative properties of local solutions u(t,x)?0 to the fast diffusion equation, tu=Δ(um)/m with m<1, corresponding to general nonnegative initial data. Our main results are quantitative positivity and boundedness estimates for locally defined solutions in domains of the form [0,TΩ, with ΩRd. They combine into forms of new Harnack inequalities that are typical of fast diffusion equations. Such results are new for low m in the so-called very fast diffusion range, precisely for all m?mc=(d−2)/d. The boundedness statements are true even for m?0, while the positivity ones cannot be true in that range.  相似文献   

8.
In this paper we study the monotonicity of positive (or non-negative) viscosity solutions to uniformly elliptic equations F(∇u,D2u)=f(u) in the half plane, where f is locally Lipschitz continuous (with f(0)?0) and zero Dirichlet boundary conditions are imposed. The result is obtained without assuming the u or |∇u| are bounded.  相似文献   

9.
We investigate the large-time behavior of classical solutions to the thin-film type equation ut=−x(uuxxx). It was shown in previous work of Carrillo and Toscani that for non-negative initial data u0 that belongs to H1(R) and also has a finite mass and second moment, the strong solutions relax in the L1(R) norm at an explicit rate to the unique self-similar source type solution with the same mass. The equation itself is gradient flow for an energy functional that controls the H1(R) norm, and so it is natural to expect that one should also have convergence in this norm. Carrillo and Toscani raised this question, but their methods, using a different Lyapunov functions that arises in the theory of the porous medium equation, do not directly address this since their Lyapunov functional does not involve derivatives of u. Here we show that the solutions do indeed converge in the H1(R) norm at an explicit, but slow, rate. The key to establishing this convergence is an asymptotic equipartition of the excess energy. Roughly speaking, the energy functional whose dissipation drives the evolution through gradient flow consists of two parts: one involving derivatives of u, and one that does not. We show that these must decay at related rates—due to the asymptotic equipartition—and then use the results of Carrillo and Toscani to control the rate for the part that does not depend on derivatives. From this, one gets a rate on the dissipation for all of the excess energy.  相似文献   

10.
带非局部源的退化半线性抛物方程的解的爆破性质   总被引:1,自引:0,他引:1  
This paper deals with the blow-up properties of the positive solutions to the nonlocal degenerate semilinear parabolic equation u t − (x a u x ) x =∫ 0 a f(u)dx in (0,a) × (0,T) under homogeneous Dirichlet conditions. The local existence and uniqueness of classical solution are established. Under appropriate hypotheses, the global existence and blow-up in finite time of positve solutions are obtained. It is also proved that the blow-up set is almost the whole domain. This differs from the local case. Furthermore, the blow-up rate is precisely determined for the special case: f(u)=u p , p>1.  相似文献   

11.
We study the Cauchy problem for the nonlinear heat equation ut-?u=|u|p-1u in RN. The initial data is of the form u0=λ?, where ?C0(RN) is fixed and λ>0. We first take 1<p<pf, where pf is the Fujita critical exponent, and ?C0(RN)∩L1(RN) with nonzero mean. We show that u(t) blows up for λ small, extending the H. Fujita blowup result for sign-changing solutions. Next, we consider 1<p<ps, where ps is the Sobolev critical exponent, and ?(x) decaying as |x|-σ at infinity, where p<1+2/σ. We also prove that u(t) blows up when λ is small, extending a result of T. Lee and W. Ni. For both cases, the solution enjoys some stable blowup properties. For example, there is single point blowup even if ? is not radial.  相似文献   

12.
The Dirichlet problem in arbitrary domain for degenerate and singular anisotropic parabolic equations with a nonlinear source term is considered. We state conditions that guarantee the existence and uniqueness of a global weak solution to the problem. A similar result is proved for the parabolic p-Laplace equation.  相似文献   

13.
For a bounded smooth domain ΩRNx+Ny let Ω?, 0<?, be a family of domains squeezed in yRNy direction. On Ω? we consider a reaction-diffusion equation with nonsymmetrical linear part. We show that under natural conditions on the nonlinearity the generated semi-flows have global attractors which in a certain sense have limits, as ?↓0.  相似文献   

14.
We obtain estimates on the possible growth or decay rates as λ → 0 of sup |uλ|, where uλ ? O satisfies the nonlinear elliptic boundary value problen Luλ = λ f(x,uλ) in a bounded domain subject to homogensous Dirichlet boundary conditions. The estimates generalize existing results by allowing f(x,O) ≠ 0. The analysis is based on integration by parts and Sobolev inequalitie.  相似文献   

15.
16.
We analyze boundary value problems prescribing Dirichlet or Neumann boundary conditions for a nonlocal nonlinear diffusion operator which is analogous to the porous medium equation in a bounded smooth domain ΩRN with N≥1. First, we prove existence and uniqueness of solutions and the validity of a comparison principle for these problems. Next, we impose boundary data that blow up in finite time and study the behavior of the solutions.  相似文献   

17.
We consider the heat equation in a straight strip, subject to a combination of Dirichlet and Neumann boundary conditions. We show that a switch of the respective boundary conditions leads to an improvement of the decay rate of the heat semigroup of the order of t−1/2. The proof employs similarity variables that lead to a non-autonomous parabolic equation in a thin strip contracting to the real line, that can be analysed on weighted Sobolev spaces in which the operators under consideration have discrete spectra. A careful analysis of its asymptotic behaviour shows that an added Dirichlet boundary condition emerges asymptotically at the switching point, breaking the real line in two half-lines, which leads asymptotically to the 1/2 gain on the spectral lower bound, and the t−1/2 gain on the decay rate in the original physical variables.This result is an adaptation to the case of strips with twisted boundary conditions of previous results by the authors on geometrically twisted Dirichlet tubes.  相似文献   

18.
We consider the Dirichlet problem for a class of fully nonlinear elliptic equations on a bounded domain Ω. We assume that Ω is symmetric about a hyperplane H and convex in the direction perpendicular to H. By a well-known result of Gidas, Ni and Nirenberg and its generalizations, all positive solutions are reflectionally symmetric about H and decreasing away from the hyperplane in the direction orthogonal to H. For nonnegative solutions, this result is not always true. We show that, nonetheless, the symmetry part of the result remains valid for nonnegative solutions: any nonnegative solution u is symmetric about H  . Moreover, we prove that if u?0u?0, then the nodal set of u divides the domain Ω into a finite number of reflectionally symmetric subdomains in which u has the usual Gidas–Ni–Nirenberg symmetry and monotonicity properties. We also show several examples of nonnegative solutions with a nonempty interior nodal set.  相似文献   

19.
In this paper, given 0<α<2/N, we prove the existence of a function ψ with the following properties. The solution of the equation ut−Δu=α|u|u on RN with the initial condition u(0)=ψ is global. On the other hand, the solution with the initial condition u(0)=λψ blows up in finite time if λ>0 is either sufficiently small or sufficiently large.  相似文献   

20.
We discuss the existence of periodic solution for the doubly nonlinear evolution equation A(u(t))+∂?(u(t))∋f(t) governed by a maximal monotone operator A and a subdifferential operator ∂? in a Hilbert space H. As the corresponding Cauchy problem cannot be expected to be uniquely solvable, the standard approach based on the Poincaré map may genuinely fail. In order to overcome this difficulty, we firstly address some approximate problems relying on a specific approximate periodicity condition. Then, periodic solutions for the original problem are obtained by establishing energy estimates and by performing a limiting procedure. As a by-product, a structural stability analysis is presented for the periodic problem and an application to nonlinear PDEs is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号