首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the low Mach number limit of the local in time solutions to the compressible Navier-Stokes equations with zero heat conductivity coefficient as the Mach number tends to zero. A uniform existence result for the one-dimensional initial-boundary value problem is proved provided that the initial data are “well-prepared” in the sense that the temporal derivatives up to order two are bounded initially.  相似文献   

2.
The low Mach number limit for classical solutions of the compressible magnetohydrodynamic equations without thermal conductivity is, here, studied. A uniform existence result for the Cauchy problem in is proved under the assumption that the initial data are uniformly bounded with respect to the Mach number in and are well‐prepared in . Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The low Mach number limit of inviscid Hookean elastodynamic equations is rigorously proved in bounded domain, whole space and periodic domain, respectively. The uniform existence of smooth solutions and convergence results as the Mach number tends to zero are obtained in three different domains.  相似文献   

4.
5.
In this paper, we consider the uniform estimates of strong solutions in the Mach number ? and t ∈ [0,) for the compressible nematic liquid crystal flows in a 3‐D bounded domain , provided the initial data are small enough and the density is close to the constant state. Here, we consider the case that the velocity field satisfies the Dirichlet boundary condition. Based on the uniform estimates, we obtain the global convergence of the compressible nematic liquid crystal system to the incompressible nematic liquid crystals system as the Mach number tends to zero.  相似文献   

6.
We study the asymptotic behaviors of the regular solutions to the compressible Navier-Stokes equations for “well-prepared” initial data for all time as the Mach number tends to zero, by deriving a differential inequality with certain decay property. The estimates obtained in this paper are uniform both in time and Mach number.  相似文献   

7.
8.
This paper is concerned with a one-dimensional nonisentropic compressible planar magnetohydrodynamic flow with general initial data, whose behaviors at far fields x→± are different. The low Mach limit for the system is rigorously justified. The limit relies on the uniform estimates including weighted time derivatives and an extended convergence lemma.  相似文献   

9.
We discuss several aspects of the problem of propagation and dispersion of acoustic waves arising in the low Mach number asymptotic limits of compressible fluid systems. A general approach is proposed based on analysis of the spectral measures associated to the corresponding wave propagator. In particular, the local decay estimates based on a result of Tosio Kato and on RAGE theorem are obtained as limit cases. The approach is applied to problems on domains their shape may vary with the Mach number.  相似文献   

10.
The low Mach number limit for one-dimensional non-isentropic compressible Navier–Stokes system without viscosity is investigated, where the density and temperature have different asymptotic states at far fields. It is proved that the solution of the system converges to a nonlinear diffusion wave globally in time as Mach number goes to zero. It is remarked that the velocity of diffusion wave is proportional with the variation of temperature. Furthermore, it is shown that the solution of compressible Navier–Stokes system also has the same phenomenon when Mach number is suitably small.  相似文献   

11.
Given $$\alpha >0$$, we establish the following two supercritical Moser–Trudinger inequalities $$\begin{aligned} \mathop {\sup }\limits _{ u \in W^{1,n}_{0,\mathrm{rad}}(B): \int _B |\nabla u|^n dx \le 1 } \int _B \exp \big ( (\alpha _n + |x|^\alpha ) |u|^{\frac{n}{n-1}} \big ) dx < +\infty \end{aligned}$$and $$\begin{aligned} \mathop {\sup }\limits _{ u\in W^{1,n}_{0,\mathrm{rad}}(B): \int _B |\nabla u|^n dx \le 1 } \int _B \exp \big ( \alpha _n |u|^{\frac{n}{n-1} + |x|^\alpha } \big ) dx < +\infty , \end{aligned}$$where $$W^{1,n}_{0,\mathrm{rad}}(B)$$ is the usual Sobolev spaces of radially symmetric functions on B in $${\mathbb {R}}^n$$ with $$n\ge 2$$. Without restricting to the class of functions $$W^{1,n}_{0,\mathrm{rad}}(B)$$, we should emphasize that the above inequalities fail in $$W^{1,n}_{0}(B)$$. Questions concerning the sharpness of the above inequalities as well as the existence of the optimal functions are also studied. To illustrate the finding, an application to a class of boundary value problems on balls is presented. This is the second part in a set of our works concerning functional inequalities in the supercritical regime.  相似文献   

12.
The quasineutral limit (zero-Debye-length limit) of viscous quantum hydrodynamic model for semiconductors is studied in this paper. By introducing new modulated energy functional and using refined energy analysis, it is shown that, for well-prepared initial data, the smooth solution of viscous quantum hydrodynamic model converges to the strong solution of incompressible Navier-Stokes equations as the Debye length goes to zero.  相似文献   

13.
It is showed that, as the Mach number goes to zero, the weak solution of the compressible Navier-Stokes equations in the whole space with general initial data converges to the strong solution of the incompressible Navier-Stokes equations as long as the later exists. The proof of the result relies on the new modulated energy functional and the Strichartz's estimate of linear wave equation.  相似文献   

14.
This note presents a short and elementary justification of the classical zero Mach number limit for isentropic compressible Euler equations with prepared initial data. We also show the existence of smooth compressible flows, with the Mach number sufficiently small, on the (finite) time interval where the incompressible Euler equations have smooth solutions.

  相似文献   


15.
This paper presents a cell-centered high order finite volume scheme for the solution of the three-dimensional (3D) Navier–Stokes equations with low Mach number. The system of non-linear equations is solved by means of a fully implicit pseudo-transient scheme. Each pseudo-time step is solved by a Newton-GMRes procedure. A local preconditioning technique is used to scale the speed of sound and to improve the system condition number for low Mach number and low cell Reynolds number. This preconditioning is applied to the AUSM+up flux vector splitting function. The method is tested on 2D and 3D low Mach number laminar flows.  相似文献   

16.
We establish a blow-up criterion in terms of the upper bound of the density and temperature for the strong solution to 2D compressible viscous heat-conductive flows. The initial vacuum is allowed.  相似文献   

17.
This paper concerns the non-isentropic Euler-Maxwell equations for plasmas with short momentum relaxation time. With the help of the Maxwell-type iteration, it is obtained that, as the relaxation time tends to zero, periodic initial-value problem of certain scaled non-isentropic Euler-Maxwell equations has unique smooth solutions existing in the time interval where the corresponding classical drift-diffusion model has smooth solutions. Meanwhile, we justify a formal derivation of the corresponding drift-diffusion model from the non-isentropic Euler-Maxwell equations.  相似文献   

18.
We consider a simplified model of compressible Navier–Stokes–Fourier coupled to the radiative transfer equation introduced by Seaïd, Teleaga and al., and we study its low Mach number limit. We prove the convergence toward the incompressible Navier–Stokes system coupled to a system of two stationary transport equations.  相似文献   

19.
We approximate a two–phase model by the compressible Navier-Stokes equations with a singular pressure term. Up to a subsequence, these solutions are shown to converge to a global weak solution of the compressible system with the congestion constraint studied for instance by Lions and Masmoudi. The paper is an extension of the previous result obtained in one-dimensional setting by Bresch et al. to the multi-dimensional case with heterogeneous barrier for the density.  相似文献   

20.
In this paper, we study the inviscid limit problem for the Navier-Stokes equations of one-dimensional compressible viscous gas on half plane. We prove that if the solution of the inviscid Euler system on half plane is piecewise smooth with a single shock satisfying the entropy condition, then there exist solutions to Navier-Stokes equations which converge to the inviscid solution away from the shock discontinuity and the boundary at an optimal rate of ε1 as the viscosity ε tends to zero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号