首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We are concerned with the well-posedness theory of two-dimensional compressible subsonic jet flow issuing from a semi-infinitely long nozzle of arbitrary cross-section. Given any atmospheric pressure p0, we show that there exists a critical mass flux mcr depending on p0 and Ω, such that if the incoming mass flux m0 is less than the critical value, then there exists a unique smooth subsonic jet flow, issuing from the given nozzle. The jet boundary is a free streamline, which initiates from the end point of the nozzle smoothly and extends to the infinity. One of the key observations in this paper is that the restriction of the incoming mass flux guarantees completely the subsonicity of the compressible jet in the whole flow field, which coincides with the observation on the compressible subsonic flows in an infinitely long nozzle without free boundary in [8].  相似文献   

2.
In this article, we study irrotational subsonic and subsonic-sonic flows with general conservative forces in the infinity long nozzle. For the subsonic case, the varified Bernoulli law leads a modified cut-off system. Because of the local average estimate, conservative forces do not need any decay condition. Afterwards, the subsonic-sonic limit solutions are constructed by taking the extract subsonic solutions as the approximate sequences.  相似文献   

3.
We construct special solutions of the full Euler system for steady compressible flows in a convergent-divergent approximate nozzle and study the stability of the purely subsonic flows. For a given pressure p0 prescribed at the entry of the nozzle, as the pressure p1 at the exit decreases, the flow patterns in the nozzle change continuously: there appear subsonic flow, subsonic-sonic flow, transonic flow and transonic shocks. Our results indicate that, to determine a subsonic flow in a two-dimensional nozzle, if the Bernoulli constant is uniform in the flow field, then this constant should not be prescribed if the pressure, density at the entry and the pressure at the exit of the nozzle are given; if the Bernoulli constant and both the pressures at the entrance and the exit are given, the average of the density at the entrance is then totally determined.  相似文献   

4.
This paper concerns subsonic flows passing a two-dimensional duct for the steady compressible Euler system. If the Bernoulli constant is uniform in the flow field, the density at the entry and both the pressures at the entrance and the exit are given, we show that the problem is generally ill-posed; but if we give the pressure at the exit with a constant difference, then under the same other conditions as above we establish the existence of subsonic flows.  相似文献   

5.
In this paper, we study the stability of supersonic contact discontinuity for the two-dimensional steady compressible Euler flows in a finitely long nozzle of varying cross-sections. We formulate the problem as an initial–boundary value problem with the contact discontinuity as a free boundary. To deal with the free boundary value problem, we employ the Lagrangian transformation to straighten the contact discontinuity and then the free boundary value problem becomes a fixed boundary value problem. We develop an iteration scheme and establish some novel estimates of solutions for the first order of hyperbolic equations on a cornered domain. Finally, by using the inverse Lagrangian transformation and under the assumption that the incoming flows and the nozzle walls are smooth perturbations of the background state, we prove that the original free boundary problem admits a unique weak solution which is a small perturbation of the background state and the solution consists of two smooth supersonic flows separated by a smooth contact discontinuity.  相似文献   

6.
In this paper, we consider the uniqueness of globally subsonic compressible flows through an infinitely long axisymmetric nozzle. The flow is governed by the steady Euler equations and satisfies no-flow boundary conditions on the nozzle walls. We will show that for given mass flux and Bernoulli’s function in the upstream, the subsonic flow is unique in the class of all axisymmetric solutions, which possess the asymptotic behaviors at the far fields. This result extends the uniqueness of solutions in the previous paper Du and Duan (2011) [1].  相似文献   

7.
We study an initial boundary value problem for the three-dimensional Navier–Stokes equations of viscous heat-conductive fluids in a bounded smooth domain. We establish a blow-up criterion for the local strong solutions in terms of the temperature and the gradient of velocity only, similar to the Beale–Kato–Majda criterion for ideal incompressible flows.  相似文献   

8.
We study the dynamics along the particle trajectories for the 3D axisymmetric Euler equations. In particular, by rewriting the system of equations we find that there exists a complex Riccati type of structure in the system on the whole of R3, which generalizes substantially the previous results in [5] (D. Chae, On the blow-up problem for the axisymmetric 3D Euler equations, Nonlinearity 21 (2008) 2053-2060). Using this structure of equations, we deduce the new blow-up criterion that the radial increment of pressure is not consistent with the global regularity of classical solution. We also derive a much more refined version of the Lagrangian dynamics than that of [6] (D. Chae, On the Lagrangian dynamics for the 3D incompressible Euler equations, Comm. Math. Phys. 269 (2) (2007) 557-569) in the case of axisymmetry.  相似文献   

9.
The initial boundary value problem for the compressible Navier-Stokes equation is considered in an infinite layer of Rn. It is proved that if n?3, then strong solutions to the compressible Navier-Stokes equation around parallel flows exist globally in time for sufficiently small initial perturbations, provided that the Reynolds and Mach numbers are sufficiently small. The proof is given by a variant of the Matsumura-Nishida energy method based on a decomposition of solutions associated with a spectral property of the linearized operator.  相似文献   

10.
In this paper, we consider an incompressible quasi-Newtonian flow with a temperature dependent viscosity obeying a power law, and the thermal balance includes viscous heating. Some mathematical results such as the existence and uniqueness are established, finite element approximation based on an iterative solution scheme is proposed, and convergence analysis is presented.  相似文献   

11.
This paper is concerned about the optimal convergence rates of non-isentropic subsonic flows at far fields in three-dimensional infinitely long axisymmetric nozzles. By using the stream function formulation for the compressible Euler equations, the subsonic Euler flows are equivalent to a quasilinear elliptic equation of the stream function. The key points to prove the convergence rates of subsonic flows at far fields are the choice of compared functions and the maximum principles.  相似文献   

12.
We consider stationary axisymmetric solutions of the Euler–Poisson equations, which govern the internal structure of barotropic gaseous stars. We take the general form of the equation of states which cover polytropic gaseous stars indexed by 6/5<γ<2 and also white dwarfs. A generic condition of the existence of stationary solutions with differential rotation is given, and the existence of slowly rotating configurations near spherically symmetric equilibria is shown. The problem is formulated as a nonlinear integral equation, and is solved by an application of the infinite dimensional implicit function theorem. Oblateness of star surface is shown and also relationship between the central density and the total mass is given.  相似文献   

13.
We address the question of well-posedness in spaces of analytic functions for the Cauchy problem for the hydrostatic incompressible Euler equations (inviscid primitive equations) on domains with boundary. By a suitable extension of the Cauchy-Kowalewski theorem we construct a locally in time, unique, real-analytic solution and give an explicit rate of decay of the radius of real-analyticity.  相似文献   

14.
In this paper, we study the global existence of steady subsonic Euler flows through infinitely long nozzles which are periodic in x1-direction with the period L. It is shown that when the variation of Bernoulli function at some given section is small and mass flux is in a suitable regime, there exists a unique global subsonic flow in the nozzle. Furthermore, the flow is also periodic in x1-direction with the period L. If, in particular, the Bernoulli function is a constant, we also get the existence of subsonic-sonic flows when the mass flux takes the critical value.  相似文献   

15.
We consider smooth three-dimensional spherically symmetric Eulerian flows of ideal polytropic gases outside an impermeable sphere, with initial data equal to the sum of a constant flow with zero velocity and a smooth perturbation with compact support. Under a natural assumption on the form of the perturbation, we obtain precise information on the asymptotic behavior of the lifespan as the size of the perturbation tends to 0. When there is no sphere, so that the flow is defined in all space, corresponding results have been obtained in [P. Godin, The lifespan of a class of smooth spherically symmetric solutions of the compressible Euler equations with variable entropy in three space dimensions, Arch. Ration. Mech. Anal. 177 (2005) 479–511].  相似文献   

16.
For a supersonic Euler flow past a straight-sided wedge whose vertex angle is less than the extreme angle, there exists a shock-front emanating from the wedge vertex, and the shock-front is usually strong especially when the vertex angle of the wedge is large. In this paper, we establish the L1 well-posedness for two-dimensional steady supersonic Euler flows past a Lipschitz wedge whose boundary slope function has small total variation, when the total variation of the incoming flow is small. In this case, the Lipschitz wedge perturbs the flow, and the waves reflect after interacting with the strong shock-front and the wedge boundary. We first obtain the existence of solutions in BV when the incoming flow has small total variation by the wave front tracking method and then establish the L1 stability of the solutions with respect to the incoming flows. In particular, we incorporate the nonlinear waves generated from the wedge boundary to develop a Lyapunov functional between two solutions containing strong shock-fronts, which is equivalent to the L1 norm, and prove that the functional decreases in the flow direction. Then the L1 stability is established, so is the uniqueness of the solutions by the wave front tracking method. Finally, the uniqueness of solutions in a broader class, the class of viscosity solutions, is also obtained.  相似文献   

17.
We investigate a steady flow of a viscous compressible fluid with inflow boundary condition on the density and inhomogeneous slip boundary conditions on the velocity in a cylindrical domain Ω=Ω0×(0,L)∈R3. We show existence of a solution , p>3, where v is the velocity of the fluid and ρ is the density, that is a small perturbation of a constant flow (, ). We also show that this solution is unique in a class of small perturbations of . The term u⋅∇w in the continuity equation makes it impossible to show the existence applying directly a fixed point method. Thus in order to show existence of the solution we construct a sequence (vn,ρn) that is bounded in and satisfies the Cauchy condition in a larger space L(0,L;L2(Ω0)) what enables us to deduce that the weak limit of a subsequence of (vn,ρn) is in fact a strong solution to our problem.  相似文献   

18.
In this paper, we study the Stokes system in the half-space , with N?2. We give existence and uniqueness results in weighted Sobolev spaces. After the central case of the generalized solutions, we are interested in strong solutions and symmetrically in very weak solutions by means of a duality argument.  相似文献   

19.
In this paper, we study the three-dimensional incompressible magnetohydrodynamic equations in a smooth bounded domains, in which the viscosity of the fluid and the magnetic diffusivity are concerned with density. The existence of global strong solutions is established in vacuum cases, provided the assumption that(|| ?μ(ρ0)|| Lp +|| ?ν(ρ0) ||Lq + ||b0|| L3+ ||ρ0|| L∞)(p, q 3) is small enough, there is not any smallness condition on the velocity.  相似文献   

20.
The Keldysh equation is a more general form of the classic Tricomi equation from fluid dynamics. Its well-posedness and the regularity of its solution are interesting and important. The Keldysh equation is elliptic in y>0 and is degenerate at the line y=0 in R2. Adding a special nonlinear absorption term, we study a nonlinear degenerate elliptic equation with mixed boundary conditions in a piecewise smooth domain—similar to the potential fluid shock reflection problem. By means of an elliptic regularization technique, a delicate a priori estimate and compact argument, we show that the solution of a mixed boundary value problem of the Keldysh equation is smooth in the interior and Lipschitz continuous up to the degenerate boundary under some conditions. We believe that this kind of regularity result for the solution will be rather useful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号