首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The purpose of this paper is to explore a viscous two-phase liquid-gas model relevant for well and pipe flow. Our approach relies on applying suitable modifications of techniques previously used for studying the single-phase isothermal Navier-Stokes equations. A main issue is the introduction of a novel two-phase variant of the potential energy function needed for obtaining fundamental a priori estimates. We derive an existence result for weak solutions in a setting where transition to single-phase flow is guaranteed not to occur when the initial state is a true mixture of both phases. Some numerical examples are also included in order to demonstrate characteristic behavior of solutions. In particular, we illustrate how two-phase flow is genuinely different compared to single-phase flow concerning the behavior of an initial mass discontinuity.  相似文献   

2.
This work deals with a viscous two-phase liquid–gas model relevant to the flow in wells and pipelines. The liquid is treated as an incompressible fluid whereas the gas is assumed to be polytropic. The model is rewritten in terms of Lagrangian coordinates and is studied in a free boundary setting where the liquid and gas masses are of compact support initially, and continuous at the boundary. Consequently, the initial masses involve a transition to single-phase gas flow and vacuum at the boundary. An appropriate balance between pressure and viscous forces is identified which allows obtaining pointwise upper and lower estimates of masses. These estimates rely on the assumption of a certain relation between the rate of degeneracy of the viscosity coefficient and the rate that determines how fast the initial masses are vanishing at the boundary. By combining these estimates with basic energy type of estimates, higher order regularity estimates are obtained. The existence of global weak solutions is then proved by showing compactness for a class of semi-discrete approximations.  相似文献   

3.
4.
In this paper, we study a free boundary value problem for two-phase liquid-gas model with mass-dependent viscosity coefficient when both the initial liquid and gas masses connect to vacuum with a discontinuity. This is an extension of the paper [S. Evje, K.H. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law, http://www.irisresearch.no/docsent/emp.nsf/wvAnsatte/SEV]. Just as in [S. Evje, K.H. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law, http://www.irisresearch.no/docsent/emp.nsf/wvAnsatte/SEV], the gas is assumed to be polytropic whereas the liquid is treated as an incompressible fluid. We give the proof of the global existence and uniqueness of weak solutions when β∈(0,1], which have improved the previous result of Evje and Karlsen, and get the asymptotic behavior result, also we obtain the regularity of the solutions by energy method.  相似文献   

5.
For a supersonic Euler flow past a straight-sided wedge whose vertex angle is less than the extreme angle, there exists a shock-front emanating from the wedge vertex, and the shock-front is usually strong especially when the vertex angle of the wedge is large. In this paper, we establish the L1 well-posedness for two-dimensional steady supersonic Euler flows past a Lipschitz wedge whose boundary slope function has small total variation, when the total variation of the incoming flow is small. In this case, the Lipschitz wedge perturbs the flow, and the waves reflect after interacting with the strong shock-front and the wedge boundary. We first obtain the existence of solutions in BV when the incoming flow has small total variation by the wave front tracking method and then establish the L1 stability of the solutions with respect to the incoming flows. In particular, we incorporate the nonlinear waves generated from the wedge boundary to develop a Lyapunov functional between two solutions containing strong shock-fronts, which is equivalent to the L1 norm, and prove that the functional decreases in the flow direction. Then the L1 stability is established, so is the uniqueness of the solutions by the wave front tracking method. Finally, the uniqueness of solutions in a broader class, the class of viscosity solutions, is also obtained.  相似文献   

6.
We consider a strictly hyperbolic system of balance laws in one space variable, that represents a simple model for a fluid flow in the presence of phase transitions. The state variables are specific volume, velocity and mass-density fraction λ of the vapor in the fluid. A reactive source term drives the dynamics of the phase mixtures; such a term depends on a relaxation parameter and involves an equilibrium pressure, allowing for metastable states.First we prove the global existence of weak solutions to the Cauchy problem, where the initial datum for λ is close either to 0 or 1 (the pure phases) and has small total variation, while the initial variations of pressure and velocity are not necessarily small. Then we consider the relaxation limit and prove that the weak solutions of the full system converge to those of the reduced system.  相似文献   

7.
We prove uniqueness and continuous dependence on initial data of weak solutions of the equations of compressible magnetohydrodynamics. The solutions we consider may exhibit discontinuities in density and in the gradients of velocity, temperature, and magnetic field. Continuous dependence is deduced by duality from existence and regularity of solutions of the adjoint of the first variation system. The analysis is complicated by the absence of strict parabolicity, the strong nonlinear coupling in the highest-order terms, and the lack of regularity in the coefficients of the adjoint system.Research supported in part by the NSF under Grant DMS-0305072.Received: May 5, 2004  相似文献   

8.
The dynamics of gaseous stars is often described by magnetic fields coupled to self-gravitation and radiation effects. In this paper we consider an initial-boundary value problem for nonlinear planar magnetohydrodynamics (MHD) in the case that the effect of self-gravitation as well as the influence of radiation on the dynamics at high temperature regimes are taken into account. Based on the fundamental local existence results and global-in-time a priori estimates, we establish the global existence of a unique classical solution with large initial data to the initial-boundary value problem under quite general assumptions on the heat conductivity.  相似文献   

9.
In this paper we study the global existence of BV solution to two-dimensional piston problem in fluid dynamics. Different from previous results on related problems we remove the restriction on the strength of the leading shock and require the velocity of the piston is rather fast or the density is quite small instead. The main tool in our proof is Glimm Scheme with some improvement. To define the Glimm functional we derive more precise estimates for the interaction of elementary waves, particularly in the region near the leading shock. The paper is partially supported by National Natural Science Foundation of China 10531020, the National Basic Research Program of China 2006CB805902 and the Doctorial Foundation of National Educational Ministry 20050246001.  相似文献   

10.
Summary. We formulate the compressible Stokes system given in (1.1) into a (new) weak formulation (2.1). A finite element method for this is presented. Existence and uniqueness of the finite element method is shown. An optimal error estimate for the numerical approximation is obtained. Numerical examples are given, showing its efficiency and rates of convergence of the approximate solutions that results from the discrete problem (3.1). Received October 20, 1996 / Revised version received January 21, 1999 / Published online: April 20, 2000  相似文献   

11.
We show existence and regularity of solution for the compressible viscous steady state Navier–Stokes system on a polygon having a grazing corner and that the density has a jump discontinuity across a curve inside the domain. There are corresponding jumps in derivatives of the velocity. The solution comes from a well-posed boundary value problem on a polygonal domain with a non-convex corner. A formula for the decay of the jump is given. The decay formula suggests that density jumps can occur in a compressible flow with a non-vanishing viscosity.  相似文献   

12.
In this paper, we prove a blow-up criterion in terms of the upper bound of the liquid mass for the strong solution to the two-dimensional (2D) viscous liquid-gas two-phase flow model in a smooth bounded domain. The result also applies to three-dimensional (3D) case.  相似文献   

13.
In this paper, a one-dimensional nonisentropic hydrodynamic model for semiconductors with non-constant lattice temperature is studied. The model is self-consistent in the sense that the electric field, which forms a forcing term in the momentum equation, is determined by the coupled Poisson equation. The existence and uniqueness of the corresponding stationary solutions are investigated carefully under proper conditions. Then, global existence of the smooth solutions for the Cauchy problem with initial data, which are perturbations of stationary solutions, is established. It is shown that these smooth solutions tend to the stationary solutions exponentially fast as t → ∞.   相似文献   

14.
The aim of this paper is to study the behaviour of a weak solution to Navier-Stokes equations for isothermal fluids with a nonlinear stress tensor for time going to infinity. In an analogous way as in [18], we construct a suitable function which approximates the density for time going to infinity. Using properties of this function, we can prove the strong convergence of the density to its limit state. The behaviour of the velocity field and kinetic energy is mentioned as well.  相似文献   

15.
In this paper, we study the continuation of solutions to an equation for surface water waves of moderate amplitude in the shallow water regime beyond wave breaking (in [11], Constantin and Lannes proved that this equation accommodates wave breaking phenomena). Our approach is based on a method proposed by Bressan and Constantin [2]. By introducing a new set of independent and dependent variables, which resolve all singularities due to possible wave breaking, the evolution problem is rewritten as a semilinear system. Local existence of the semilinear system is obtained as fixed points of a contractive transformation. Moreover, this formulation allows one to continue the solution after collision time, giving a global conservative solution where the energy is conserved for almost all times. Finally, returning to the original variables, we obtain a semigroup of global conservative solutions, which depend continuously on the initial data.  相似文献   

16.
In this paper we study the asymptotic behavior of globally smooth solutions of the Cauchy problem for the multidimensional isentropic hydrodynamic model for semiconductors in Rd. We prove that smooth solutions (close to equilibrium) of the problem converge to a stationary solution exponentially fast as t→+∞.  相似文献   

17.
In this paper, the existence and asymptotic behavior of C1C1 solutions to the multi-dimensional compressible Euler equations with damping on the framework of Besov space are considered. Comparing with the well-posedness results of Sideris–Thomases–Wang [T. Sideris, B. Thomases, D.H. Wang, Long time behavior of solutions to the three-dimensional compressible Euler with damping, Comm. Partial Differential Equations 28 (2003) 953–978], we weaken the regularity assumptions on the initial data. The global existence lies on a crucial a-priori estimate which is obtained by the spectral localization method. The main analytic tools are the Littlewood–Paley decomposition and Bony’s paraproduct formula.  相似文献   

18.
We establish a global existence of traveling waves for diffusive-dispersive conservation laws for locally Lipschitz flux functions. Using Lyapunov stability techniques, we reduce the global problem of finding traveling waves to considering local behaviors of a stable trajectory of the saddle point.  相似文献   

19.
In this paper we study the motion of slightly compressible inviscid fluids. We prove that the solution of the corresponding system of nonlinear partial differential equations converges (uniformly) in the strong norm (that of the data space) to the solution of the incompressible equations, as the Mach number goes to zero (see Theorem 1.2). Actually, our proof applies to a large class of singular limit problems as shown in the Theorem 2.2.  相似文献   

20.
We prove the global existence of solutions to a model for a viscous, compressible, barotropic fluid initially occupying a general open subset of a finite, one-dimensional interval. The fluid equations are applied only on the support of the density, understood in the sense of distributions. This support must be tracked and accommodation must be made for the possibly infinite number of collisions of fluid packets occurring on a possibly dense set of collision times. Our approach avoids certain nonphysical properties of solutions which are constructed as limits of solutions in which artificial mass has been inserted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号