首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
At the micro and nano scale the standard no slip boundary condition of classical fluid mechanics does not apply and must be replaced by a boundary condition that allows some degree of tangential slip. In this study the classical laminar boundary layer equations are studied using Lie symmetries with the no-slip boundary condition replaced by a nonlinear Navier boundary condition. This boundary condition contains an arbitrary index parameter, denoted by n>0, which appears in the coefficients of the ordinary differential equation to be solved. The case of a boundary layer formed in a convergent channel with a sink, which corresponds to n=1/2, is solved analytically. Another analytical but non-unique solution is found corresponding to the value n=1/3, while other values of n for n>1/2 correspond to the boundary layer formed in the flow past a wedge and are solved numerically. It is found that for fixed slip length the velocity components are reduced in magnitude as n increases, while for fixed n the velocity components are increased in magnitude as the slip length is increased.  相似文献   

2.
Our concern is with existence and regularity of the stationary compressible viscous Navier-Stokes equations with no-slip condition on convex polygonal domains. Note that [u,p]=[0,c], c a constant, is the eigenpair for the singular value λ=1 of the Stokes problem on the convex sector. It is shown that, except the pair [0,c], the leading order of the corner singularities for the nonlinear equations is the same as that of the Stokes problem. We split the leading corner singularity from the solution and show an increased regularity for the remainder. As a consequence the pressure solution changes the sign at the convex corner and its derivatives blow up.  相似文献   

3.
An asymptotic analysis is given for the effect of roughness exhibited through the slip parameter β on the motion of the sphere, moving away from a plane surface with velocityV. The method replaces the no-slip condition at the rough surface by slip condition and employs the method of inner and outer regions on the sphere surface. For β > 0, we have the classical slip boundary condition and the results of the paper are then of interest in the microprocessor industry.  相似文献   

4.
Summary We consider a mixed finite element approximation of the stationary, incompressible Navier-Stokes equations with slip boundary condition, which plays an important rôle in the simulation of flows with free surfaces and incompressible viscous flows at high angles of attack and high Reynold's numbers. The central point is a saddle-point formulation of the boundary conditions which avoids the well-known Babuka paradox when approximating smooth domains by polyhedrons. We prove that for the new formulation one can use any stable mixed finite element for the Navier-Stokes equations with no-slip boundary condition provided suitable bubble functions on the boundary are added to the velocity space. We obtain optimal error estimates under minimal regularity assumptions for the solution of the continous problem. The techniques apply as well to the more general Navier boundary condition.  相似文献   

5.
The subinertial internal Kelvin wave solutions of a linearized system of the ocean dynamics equations for a semi-infinite two-layer f-plane model basin of constant depth bordering a straight, vertical coast are imposed. A rigid lid surface condition and no-slip wall boundary condition are imposed. Some trapped wave equations are presented and approximate solutions using an asymptotic method are constructed. In the absence of bottom friction, the solution consists of a frictionally modified Kelvin wave and a vertical viscous boundary layer. With a no-slip bottom boundary condition, the solution consists of a modified Kelvin wave, two vertical viscous boundary layers, and a large cross-section scale component. The numerical solutions for Kelvin waves are obtained for model parameters that take account of a joint effect of lateral viscosity, bottom friction, and friction between the layers.  相似文献   

6.
We consider approximation by partial time steps of a smooth solution of the Navier-Stokes equations in a smooth domain in two or three space dimensions with no-slip boundary condition. For small k > 0, we alternate the solution for time k of the inviscid Euler equations, with tangential boundary condition, and the solution of the linear Stokes equations for time k, with the no-slip condition imposed. We show that this approximation remains bounded in H2,p and is accurate to order k in Lp for p > ∞. The principal difficulty is that the initial state for each Stokes step has tangential velocity at the boundary generated during the Euler step, and thus does not satisfy the boundary condition for the Stokes step. The validity of such a fractional step method or splitting is an underlying principle for some computational methods. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
A priori error estimates in the H1- and L2-norms are established for the finite element method applied to the exterior Helmholtz problem, with modified Dirichlet-to-Neumann (MDtN) boundary condition. The error estimates include the effect of truncation of the MDtN boundary condition as well as that of discretization of the finite element method. The error estimate in the L2-norm is sharper than that obtained by the author [D. Koyama, Error estimates of the DtN finite element method for the exterior Helmholtz problem, J. Comput. Appl. Math. 200 (1) (2007) 21-31] for the truncated DtN boundary condition.  相似文献   

8.
We introduce and study a rough (approximate) curvature-dimension condition for metric measure spaces, applicable especially in the framework of discrete spaces and graphs. This condition extends the one introduced by Karl-Theodor Sturm, in his 2006 article On the geometry of metric measure spaces II, to a larger class of (possibly non-geodesic) metric measure spaces. The rough curvature-dimension condition is stable under an appropriate notion of convergence, and stable under discretizations as well. For spaces that satisfy a rough curvature-dimension condition we prove a generalized Brunn-Minkowski inequality and a Bonnet-Myers type theorem.  相似文献   

9.
Micro/nano sliding plate problem with Navier boundary condition   总被引:1,自引:0,他引:1  
For Newtonian flow through micro or nano sized channels, the no-slip boundary condition does not apply and must be replaced by a condition which more properly reflects surface roughness. Here we adopt the so-called Navier boundary condition for the sliding plate problem, which is one of the fundamental problems of fluid mechanics. When the no-slip boundary condition is used in the study of the motion of a viscous Newtonian fluid near the intersection of fixed and moving rigid plane boundaries, singular pressure and stress profiles are obtained, leading to a non-integrable force on each boundary. Here we examine the effects of replacing the no-slip boundary condition by a boundary condition which attempts to account for boundary slip due to the tangential shear at the boundary. The Navier boundary condition, possesses a single parameter to account for the slip, the slip length ℓ, and two solutions are obtained; one integral transform solution and a similarity solution which is valid away from the corner. For the former the tangential stress on each boundary is obtained as a solution of a set of coupled integral equations. The particular case solved is right-angled corner flow and equal slip lengths on each boundary. It is found that when the slip length is non-zero the force on each boundary is finite. It is also found that for a suffciently large distance from the corner the tangential stress on each boundary is equal to that of the classical solution. The similarity solution involves two restrictions, either a right-angled corner flow or a dependence on the two slip lengths for each boundary. When the tangential stress on each boundary is calculated from the similarity solution, it is found that the similarity solution makes no additional contribution to the tangential stress of that of the classical solution, thus in agreement with the findings of the integral transform solution. Values of the radial component of velocity along the line θ = π /4 for increasing distance from the corner for the similarity and integral transform solutions are compared, confirming their agreement for sufficiently large distances from the corner. (Received: November 9, 2005)  相似文献   

10.
We prove the homogenization of the Dirichlet problem for fully nonlinear uniformly elliptic operators with periodic oscillation in the operator and in the boundary condition for a general class of smooth bounded domains. This extends the previous results of Barles and Mironescu (2012) [4] in half spaces. We show that homogenization holds despite a possible lack of continuity in the homogenized boundary data. The proof is based on a comparison principle with partial Dirichlet boundary data which is of independent interest.  相似文献   

11.
We prove the existence and uniqueness, local in time, of the solution of a one-phase Stefan problem for a non-classical heat equation for a semi-infinite material with a convective boundary condition at the fixed face x = 0. Here the heat source depends on the temperature at the fixed face x = 0 that provides a heating or cooling effect depending on the properties of the source term. We use the Friedman-Rubinstein integral representation method and the Banach contraction theorem in order to solve an equivalent system of two Volterra integral equations. We also obtain a comparison result of the solution (the temperature and the free boundary) with respect to the one corresponding with null source term.  相似文献   

12.
The forced convection heat transfer resulting from the flow of a uniform stream over a flat surface on which there is a convective boundary condition is considered. In previous papers [5], [6], [7], [8] it was assumed that the convective heat transfer parameter hf associated with the hot surface depended on x, where x measures distance along the surface, so that problem could be reduced to similarity form. Here it is assumed that this heat transfer parameter hf is a constant, with the result that the temperature profiles and overall heat transfer characteristics evolve as the solution develops from the leading edge. The heat transfer near the leading edge (small x), which we find to be dominated by the surface heat flux, the solution at large distances along the surface (large x), which dominated by the surface temperature, are discussed. A numerical solution to the full problem is then obtained for a range of values of the Prandtl number to join these two solution regimes.  相似文献   

13.
The boundary function method [A. B. Vasil'eva, V. F. Butuzov, and L. V. Kalachev, The boundary function method for singular perturbation problems, SIAM Studies in Applied Mathematics, Philadelphia, 1995] is used to build an asymptotic expansion at any order of accuracy of a scalar time‐harmonic wave scattered by a perfectly reflecting doubly periodic surface with oscillations at small and large scales. Error bounds are rigorously established, in particular in an optimal way on the relevant part of the field. It is also shown how the maximum principle can be used to design a homogenized surface whose reflected wave yields a first‐order approximation of the actual one. The theoretical derivations are illustrated by some numerical experiments, which in particular show that using the homogenized surface outperforms the usual approach consisting in setting an effective boundary condition on a flat boundary. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
We prove that the Rieffel sharpness condition for a Banach space E is necessary and sufficient for an arbitrary Lipschitz function f: [a, b]→E to be differentiable almost everywhere on a segment [a, b]. We establish that, in the case where the sharpness condition is not satisfied, the major part (in the category sense) of Lipschitz functions has no derivatives at any point of the segment [a, b].  相似文献   

15.
In this Note we deduce an explicit Sommerfeld-type radiation condition which is convenient to prove the uniqueness for the time-harmonic outgoing wave problem in an isotropic elastic half-plane with free boundary condition. The expression is obtained from a rigorous asymptotic analysis of the associated Green's function. The main difficulty is that the free boundary condition allows the propagation of a Rayleigh wave which cannot be neglected in the far field expansion. We also give the existence result for this problem. To cite this article: M. Durán et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).  相似文献   

16.
In this paper we consider the heat flow of harmonic maps between two compact Riemannian Manifolds M and N (without boundary) with a free boundary condition. That is, the following initial boundary value problem ∂1,u −Δu = Γ(u)(∇u, ∇u) [tT Tu uN, on M × [0, ∞), u(t, x) ∈ Σ, for x ∈ ∂M, t > 0, ∂u/t6n(t, x) ⊥u Tu(t,x) Σ, for x ∈ ∂M, t > 0, u(o,x) = uo(x), on M, where Σ is a smooth submanifold without boundary in N and n is a unit normal vector field of M along ∂M. Due to the higher nonlinearity of the boundary condition, the estimate near the boundary poses considerable difficulties, even for the case N = ℝn, in which the nonlinear equation reduces to ∂tu-Δu = 0. We proved the local existence and the uniqueness of the regular solution by a localized reflection method and the Leray-Schauder fixed point theorem. We then established the energy monotonicity formula and small energy regularity theorem for the regular solutions. These facts are used in this paper to construct various examples to show that the regular solutions may develop singularities in a finite time. A general blow-up theorem is also proven. Moreover, various a priori estimates are discussed to obtain a lower bound of the blow-up time. We also proved a global existence theorem of regular solutions under some geometrical conditions on N and Σ which are weaker than KN <-0 and Σ is totally geodesic in N.  相似文献   

17.
In this article we study the 3D Navier-Stokes equations with Navier friction boundary condition in thin domains. We prove the global existence of strong solutions to the 3D Navier-Stokes equations when the initial data and external forces are in large sets as the thickness of the domain is small. We generalize the techniques developed to study the 3D Navier-Stokes equations in thin domains, see [G. Raugel, G. Sell, Navier-Stokes equations on thin 3D domains I: Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993) 503-568; G. Raugel, G. Sell, Navier-Stokes equations on thin 3D domains II: Global regularity of spatially periodic conditions, in: Nonlinear Partial Differential Equations and Their Application, College de France Seminar, vol. XI, Longman, Harlow, 1994, pp. 205-247; R. Temam, M. Ziane, Navier-Stokes equations in three-dimensional thin domains with various boundary conditions, Adv. Differential Equations 1 (1996) 499-546; R. Temam, M. Ziane, Navier-Stokes equations in thin spherical shells, in: Optimization Methods in Partial Differential Equations, in: Contemp. Math., vol. 209, Amer. Math. Soc., Providence, RI, 1996, pp. 281-314], to the Navier friction boundary condition by introducing a new average operator Mε in the thin direction according to the spectral decomposition of the Stokes operator Aε. Our analysis hinges on the refined investigation of the eigenvalue problem corresponding to the Stokes operator Aε with Navier friction boundary condition.  相似文献   

18.
The goal of this article is to study the boundary layer of wall bounded flows in a channel at small viscosity when the boundaries are uniformly noncharacteristic, i.e., there is injection and/or suction everywhere at the boundary. Following earlier work on the boundary layer for linearized Navier-Stokes equations in the case where the boundaries are characteristic (no-slip at the boundary and non-permeable), we consider here the case where the boundary is permeable and thus noncharacteristic. The form of the boundary layer and convergence results are derived in two cases: linearized equation and full nonlinear equations. We prove that there exists a boundary layer at the outlet (downwind) of the form eUz/ε where U is the speed of injection/suction at the boundary, z is the distance to the outlet of the channel, and ε is the kinematic viscosity. We improve an earlier result of S. N. Alekseenko (1994, Siberian Math. J.35, No. 2, 209-230) where the convergence in L2 of the solutions of the Navier-Stokes equations to that of the Euler equations at vanishing viscosity was established. In the two dimensional case we are able to derive the physically relevant uniform in space (L norm) estimates of the boundary layer. The uniform in space estimate is derived by properly developing our previous idea of better control on the tangential derivative and the use of an anisotropic Sobolev imbedding. To the best of our knowledge this is the first rigorously proved result concerning boundary layers for the full (nonlinear) Navier-Stokes equations for incompressible fluids.  相似文献   

19.
For the Gellerstedt equation with a singular coefficient, we consider a boundary value problem that differs from the Tricomi problem in that the boundary characteristic AC is arbitrarily divided into two parts AC 0 and C 0 C and the Tricomi condition is posed on the first of them, while the second part C 0 C is free of boundary conditions. The lacking Tricomi condition is equivalently replaced by an analog of the Frankl condition on a segment of the degeneration line. The well-posedness of this problem is proved.  相似文献   

20.
We consider solutions of inhomogeneous, reduced hyperbolic equations of the second order, with a large parameter multiplying the unknown function. These solutions are defined on the m-dimensional region outside a star-shaped body. They satisfy an “outgoing” radiation condition at infinity and a Dirichlet boundary condition.We obtain a priori estimates for these solutions, at every point outside or on the surface of a two- or three-dimensional star-shaped body, that hold for sufficiently large values of the parameter. We prove that each solution is bounded by a linear combination of (i) the maximum norm of its prescribed boundary values, (ii) the L2 norm of the prescribed values of its tangential derivative, (iii) an L2 norm of the source term. This result is based on similar inequalities that we first obtain for a certain L2 norm of the gradient, and of the normal derivative on the boundary, of each solution defined outside an m-dimensional star-shaped body.For the special case of the reduced wave equation, Morawetz and Ludwig [1] have obtained similar estimates. Just as their results have been used in [3] to confirm the geometrical theory of diffraction, the estimates obtained in this paper can be used to establish the validity of certain formal asymptotic solutions of reduced hyperbolic equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号