首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low lying electronic states of the molecule MoN were investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) calculations. The relativistic corrections for the one electron Darwin contact term and the relativistic mass-velocity correction were determined in perturbation calculations. The electronic ground state is confirmed as being 4. The chemical bond of MoN has a triple bond character because of the approximately fully occupied delocalized bonding π and σ orbitals. The spectroscopic constants for the ground state and ten excited states were derived. The excited doublet states 2, 2Γ, 2Δ, and 2+ are found to be lower lying than the 4Π state that was investigated experimentally. Elaborate multi-configuration configuration-interaction (MRCI) calculations were carried out for the states 4 and 4∏ using various basis sets. The spectroscopic constants for the 4 ground state were determined as re=1.636 Å and ωe=1109 cm−1, and for the 4∏ state as re=1.662 Å and ωe=941 cm−1. The values for the ground state are in excellent agreement with available experimental data. The MoN molecule is polar with a charge transfer from Mo to N. The dipole moment was determined as 2.11 D in the 4 state and as 4.60 D in the 4∏ state. These values agree well with the revised experimental values determined from molecular Stark spectroscopic measurements. The dissociation energy, De, is determined as 5.17 eV, and D0 as 5.10 eV.  相似文献   

2.
The electronic dipole transition moment functions of the A 2Π-X 2Σ+, B 2Σ+-X 2Σ+ and B 2Σ+-A 2Π transitions and the dipole moment function of the X 2Σ+ state of CO+ have been calculated using large contracted CI wavefunctions. The computed transition moment functions together with experimental potential energy curves were used to obtain radiative lifetimes of the excited electronic states B 2Σ+ and A 2Π. Radiative lifetimes of vibrational levels of the X 2Σ+ state were derived from the calculated dipole moment function. The high-frequency deflection technique was used to obtain radiative lifetimes of the ν′ = 0, 1,2 and 3 vibrational levels of the B 2Σ+ state and also radiative lifetimes of individual rotational levels of ν′ =0. The calculated radiative lifetimes are shorter than the measured ones by about 10%. The experimental ν′ dependence is reproduced by theoretical calculation. The calculated radiative lifetimes for the A 2Π state are in excellent agreement with lifetimes measured with an ion trap technique.  相似文献   

3.
The A 2Πu-X 2Πg electronic emission spectrum of I2+ has been recorded at a low rotational temperature in a crossed molecular beam/electron beam apparatus. Six vibrational sequences with five or more members have been assigned to progressions in ν′, giving ω′e = 122±8 cm−1, but a full vibrational analysis has not been possible. It is not known whether this is due to the relatively poor resolution (≈5 cm−1) at which the spectrum has been recorded or because the A 2Πu state is perturbed in one or both spin-orbit components. Existing data on the A state of I2+ are reviewed.  相似文献   

4.
The potential energy, dipole, quadrupole and octopole moments and dipole polarisabilities have been calculated at CASSCF level for the ground X1Σ+ state of the PO+ molecular ion as a function of internuclear distance. Most of the electrical properties have not previously been calculated and show rapid variations around 5 a.u. due to a perturbation. The calculated vibrational frequency of 1410.4 cm−1 and the integrated IR absorption intensity of 984 cm2 mol−1 should lead towards the first observation of the vibrational spectrum.  相似文献   

5.
The 4067 Å line of the krypton-ion laser covers two transitions in the BO+u-X O+g system of 130Te2, R(36) in the 16-0 band and R(172) in the 18-0 band. Subsequent fluorescence has been recorded by Fourier transform spectrometry in the range 5900 to 15000 cm−1. Many transitions, with v' in the range 0 to 47, have been assigned to a new system, B O+u-b1+g, and vibrational and rotational constants for the new state have been derived. The value of Te for b Ig+ is about 9600.2 cm−1.  相似文献   

6.
The lowest three (12A,22A,12A′′) potential energy surfaces of the C2F radical have been studied at the ab initio level, using Multi Reference Configuration Interaction techniques. For linear geometries, the three surfaces correlate with a 2Π and a 2Σ+ state, which are very close in energy. Only the X2A ground state was found to be bent, with RCC=1.271 Å; RCF=1.276 Å; CCF=165°, and a barrier to linearity of 275 cm−1. The spin–rovibronic energy levels up to J=7/2 have been calculated using a recently developed method [Carter et al., Mol. Phys. 98 (2000) 1967]. Almost all of the resulting levels arise from a strong mixture of two out of three electronic states and their assignment is intrinsically ambiguous. A partial characterization, based on the shape of the vibronic wavefunctions, has been made.  相似文献   

7.
C.J. Reid 《Chemical physics》1996,210(3):501-511
Translational-energy spectroscopy was applied to collisional-excitation and charge-inversion reactions of CF+, CCl+, SiF+ and SiCl+ in order to gain energetic and bond-length information about the anionic and excited-cationic states of the title molecules. The excitation spectra revealed that the ã3Π state, known in CCl+ and SiCl+, has a term energy of 4.85 ± 0.15 eV in CF+ and 4.70 ± 0.20 eV in SiF+, while the 11Π state, known in CCl+, is not below the dissociation threshold in CF+, SiF+ and SiCl+. These data, and bond-length estimates for the ã3Π states, are consistent with documented ab initio predictions except for re of CF+3Π) which seems to be larger than 1.21 Å. Charge-inversion spectra indicated that beams of monohalide cations formed from the tetrahalides, contained substantial proportions of ã3Π-state ions, and, in the case of CCl, SiF and SiCl, the broadness of spectral peaks was taken as evidence for the stability of the ã1Δ-state anion. Adiabatic electron affinities were deduced to be 0.49 ± 0.15 eV, 0.89 ± 0.20 eV, 1.34 ± 0.30 eV and 1.40 ± 0.30 eV for the title molecules, respectively.  相似文献   

8.
Autoionizing Rydberg levels of Li2 molecules in a supersonic molecular beam are populated by stepwise excitation with two tunable pulsed dye lasers. The observed autoionization spectra show severe perturbations. Based on calculations of quantum defects and a perturbation treatment of l-uncoupling a tentative assignment of Rydberg series up to n = 32 is proposed. The convergence limits of these series yield a value of IP = 41475 cm−1 for the adiabatic ionization potential and a vibrational constant ωe = 263 cm−1 for the X2Σ+g ground state of Li+2. The experimental results are compared with ab initio calculations combined with a core polarization potential, which yield the potential curve. the dissociation energy, the quadrupole moment and the vibrational frequency for the X2Σ+g ground state of Li+2, in the excellent agreement with experimental findings.  相似文献   

9.
A potential energy function has been derived for the two linear isomer structures He2Ne+(X2Σ+) using ab initio calculations with the QCISD(T)/6–31++G(d,p) method. Because we use the reasonable dissociation limit (3) instead of the unacceptable one (1), our potential energy function represents considerable topographical features in detail, including the linear [He---Ne+---He] structure (RHeNe = 1.4694 Å, RHe'Ne = 2.0069 Å HeNeHe = 180°) with two symmetric linear saddles (RHeNe = RHe'Ne = 1.80 Å, HeNeHe = 180° and RHeNe = 1.5 Å, RHe'Ne = 3.2 A°, HeNeHe = 180°), and the topographical minimum of the [He---He---Ne+] structure (RHeHe = 2.2217 Å, RHeNe = 1.4426 Å, HeHeNe = 180°), with a linear saddle (RHeHe' = 3.0 Å, RHeNe = 1.8 Å, HeHeNe = 180°).  相似文献   

10.
The XeOSeF5+ cation has been synthesized for the first time and characterized in solution by 19F, 77Se and 129Xe NMR spectroscopy and in the solid state by X-ray crystallography and Raman spectroscopy with AsF6 as its counter anion. The X-ray crystal structures of the tellurium analogue and of the Xe(OChF5)2 derivatives have also been determined: [XeOChF5][AsF6] crystallize in tetragonal systems, P4/n, a=6.1356(1) Å, c=13.8232(2) Å, V=520.383(14) Å3, Z=2 and R1=0.0453 at −60°C (Te) and a=6.1195(7) Å, c=13.0315(2) Å, V=488.01(8) Å3, Z=2 and R1=0.0730 at −113°C (Se); Xe(OTeF5)2 crystallizes in a monoclinic system, P21/c, a=10.289(2) Å, b=9.605(2) Å, c=10.478(2) Å, β=106.599(4)°, V=992.3(3) Å3, Z=4 and R1=0.0680 at −127°C; Xe(OSeF5)2 crystallizes in a triclinic system, , a=8.3859(6) Å, c=12.0355(13) Å, V=732.98(11) Å3, Z=3 and R1=0.0504 at −45°C. The energy minimized geometries and vibrational frequencies of the XeOChF5+ cations and Xe(OChF5)2 were calculated using density functional theory, allowing for definitive assignments of their experimental vibrational spectra.  相似文献   

11.
Large-scale MRD CI calculations assign to AlP the ground state X 3Σ (9σ22) and a close-lying state 1 3Π (9σ3π3) (Te = 0.08 eV). Up to transition energies of 2.0 eV, other states are described by the configurations 9σ3π3 (11Π), 8σ24 (1 1Σ+), 9σ22 (1 1Δ and 2 1Σ+) and 9σ3π24π (1 5Π). The 2 3Π state, located at ≈ 2.30 eV, shows a shallow double minimum. Numerous perturbations are expected to induce predissociation upon 2 3Π. Multiplets arising from the occupation 8σ234π are clustered in the 3.25–3.50 eV region. Quintet states with the configuration 8σ9σ3π34π are bound, with Te values (in eV) of 3.80 (1 5Σ+), 4.44 (1 5Δ) and 4.88 (3 5Σ), respectively. The 9σ → 4s Rydberg members 5Σ and 3Σ lie in the 4.58–4.72 eV energy region. The first ionization potential (ionization to X4Σ of AlP+, 9σ → ∞) is estimated to be 7.65 eV. Ionization to the 1 2Σ and 1 2Π states of AlP+ is suggested to occur between 8.0 and 8.8 eV. The dipole moments of X 3Σ, 1 1Δ and 2 1Σ+ are close to 1.0 D, whereas the 1 1Σ+ state has μ = 3.49 D; 1 3Π and 1 1Π have dipole moments from 2.45 to 2.91 D. All low-lying states show a polarity Al+P. Finally, the electronic structure and transition energies of AlP are compared with those of the isoelectronic species BN, AIN, and SiP+.  相似文献   

12.
A mixture of NF3 and Ar is passed through an rf discharge in a flow-system to produce, among other species, F and NF2. When H2, D2, or CH4 are added downstream, reactions with F atoms produce vibrationally excited HF or DF together with H, D, or CH3. The latter free radicals can react with NF2, probably by an elimination reaction to produce electronically excited NF: NF2(2B1) + H(D, CH3) → HF*(DF* + NF(a1Δ). A vibrational-to-electronic energy transfer process between the products of this reaction then produces the next higher state of NF: HF(ν 2) + NF(a1Δ) → HF(ν−2) + NF(b1Σ+). A similar transfer process has also been found between the electronically excited a1Δ states of O2 and NF: O2(a1Δ) + NF(a1Δ) → O2(X3Σ) + NF(b1Σ+). The H or D atoms but not the CH3 radicals are then found to react with either NF(a1Δ) or NF(X3Σ) to produce electronically excited N(2D) atoms, which in turn react with the NF(a1Δ) molecules to produce N2(B3Πg). The observed nitrogen first positive radiation has been demonstrated to be produced entirely by this reaction mechanism rather than by the N(4S) recombination that accounts for the Rayleigh afterglow. In addition, the occurrence of the reaction N(2D) + N2O → NO(B2Πr) + N2 (X1Σ+g) has been verified. Finally we have observed emission at 3344 Å, which we attribute to the NF(A3Π), which has not been previously reported.  相似文献   

13.
The chemiluminescent emission of lanthanum monosulfide resulting from the reaction of lanthanum with carbonyl sulfide was studied. A band system extending from 4300 to 4800 Å was observed. It was already analyzed and identified as the C2Π-X2Σ+ transition. A lower bound of 136.15 ± 0.42 kcal/mole was calculated for D00(LaS). The spectra and structure of LaS are compared to LaO.  相似文献   

14.
N-(ω-carboxyalkyl)morpholine hydrochlorides, OC4H8N(CH2)nCOOH·HCl, n=1–5, were obtained and analyzed by 13C cross polarization (CP) magic angle spinning (MAS) NMR, FTIR and PM3 calculations. The structure of N-(3-carboxypropyl)morpholine hydrochloride (n=3) has been solved by X-ray diffraction method at 100 K and refined to the R=0.031. The crystals are monoclinic, space group P21/c, a=14.307(3), b=9.879(2), c=7.166(1) Å, β=93.20(3)°, V=1011.3(3) Å3, Z=4. In this compound the nitrogen atom is protonated and two molecules form a centrosymmetric dimer, connected by two N+–HCl (3.095(1) Å) and two O–HCl (3.003(1) Å) hydrogen bonds. 13C CP MAS NMR spectra, contrary to the solution, showed non-equivalence of the ring carbon atoms. The PM3 calculations predict a molecular dimer without proton transfer for an HCl complex, while for an HBr complex an ion pairs with proton transfer, and reproduces correctly the conformation of both dimers but overestimates H-bond distances. Shielding constants calculated from the PM3 geometry of ion pairs gave a linear correlation with the 13C chemical shifts in solids.  相似文献   

15.
Large-basis-set calculations of near Hartree-Fock accuracy were performed on CO+(1σ-hole 2Σ+) and CO+)2σ-hole, 2Σ+); correlation energies for these systems and for CO were calculated using an atoms-in-molecule approach, relativistic energies and vibrational structure corrections were also considered. The results are: IP(CO, 1σ) = 542.4 (542.57) eV, IP(CO,2σ) = 297.0 (296.24) cV, Dc(CO, 1Σ+) = 10.8 (11.1) Ev, D3(CO+, 1σ, 2Σ+) = 11.9 eV, De(CO+, 2σ, 2Σ+) = 9.1 eV, where IP and De stand respectively for ionization potential and dissociation energy, and where the numbers in parentheses refer to the most recent experimental values. The electron transfers resulting from the ionization of inner-shell electrons are discussed. Finally a quantitative correlation is developed correlating absolute chemical shifts to charge densities. Agreement between the calculated values and those derived from the correlation is quite satisfactory.  相似文献   

16.
The molecular structure of CF3SiH3 in the gas phase has been determined by electron diffraction analysis. Combined with a B0 value derived from high resolution infrared spectra, this yielded r(SiC), 1.923(3) Å, r(SiH) 1.482(5) Å, r(CF) 1.348(1) Å, FCF 106.7(5)° and HSiH 110.3(10)° (r° values). The gas phase infrared and liquid phase Raman spectra of CF3SiH3, CF3SiH2D, CF3SiD3 have been measured and assigned, and force constants have been calculated by means of a normal coordinate analysis based on 52 experimental frequencies. The weakness of the SiC bond is confirmed by the low f(SiC) value of 2.54 N cm−1. Infrared spectra recorded with a resolution of 0.04 cm−1 at 240 K revealed rotational structure of vibrational bands. Rotational analyses of most parallel and a few perpendicular bands of CF3SiH3 and CF3SiD3 have been performed. Ground and excited state vibrational parameters have been obtained and used as supplementary data for the determination of the harmonic force field. Strong blending of all bands due to hot band cascades was noted.  相似文献   

17.
A high-resolution (1–7 meV) threshold photoelectron spectroscopic study of IBr was performed using synchrotron radiation and a penetrating-field electron spectrometer over the valence ionization region of the molecule. Extensive vibrational structure was found in all three electronic-state band systems (X2Πi, A2Πi and B2Σ+) of IBr+. In the (X2Πi) band system both spin–orbit components exhibited extended vibrational structure in the Franck–Condon gap regions that is attributed to resonance autoionization of neutral Rydberg states lying in these energy regions. Analysis of this vibrational structure yielded accurate spectroscopic constants.  相似文献   

18.
The recombination of nitrogen atoms on polycrystalline samples of cobalt and nickel produces metastable electronically excited nitrogen molecules, probably N2(W3Δu), which are collisionally transferred to the N2(B3Πg) state. Information about vibrational relaxation of the metastable state by N2(X1Σ+g) is inferred from composition dependent changes in the observed first positive emission spectrum [N29A3Σ+g)−N2(B3Πg] with the aid of multilevel, steady-state, kinetic model.  相似文献   

19.
F. Grein 《Chemical physics》1988,120(3):383-388
Potential curves were calculated for eighteen low-lying doublet and quartet states of PN+, using configuration-interaction methods and double-zeta plus polarization and diffuse basis sets. Spectroscopic constants were evaluated for fourteen stable states. The X 2Σ+ ground state lies very close to A 2Π (0.34 eV calculated). The 2 2Σ+ state has two shallow minima of similar energy, being due to σ* → σ at smaller R, and π → π* at larger R. For N2+, σ* → σ is much lower in energy than π → π*, whereas the opposite situation applies to P2+.  相似文献   

20.
R. Polk  J. Fi er 《Chemical physics》2003,290(2-3):177-188
The electric field gradients (EFG’s) at the nucleus are calculated as a function of internuclear separation in the X2Σg+ and B2Σu+ electronic states of the nitrogen molecule cation using the internally contracted multireference configuration interaction (icMRCI) method. The EFG’s and potential energy functions (PEF’s) are used to estimate the 14N nuclear quadrupole coupling constants (NQCC’s) in the two electronic states as functions of vibrational and end-over-end rotational quantum numbers. The dependences of the computed constants on the basis set and reference configuration space are investigated. Since no counterpart for comparison of the calculated NQCC’s exists, the N2+ results are supported by analogous calculations on the X1Σg+ and A3Σu+ states of N2, for which established data are available. The overall good quality of the icMRCI wave functions is further corroborated by a favorable agreement of spectroscopic constants derived from the corresponding PEF’s and experimental data. Variations of the EFG with internuclear separation are explained in terms of wave function composition, and used for gaining specific insight into the chemical bonding in N2+ and N2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号