首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Ionic strength and pH will influence the zeta potential of suspended particles, and consequently particle interactions and rheological properties as well. In this study the rheological properties and aggregation behaviour of Aerosil particles dispersed in aqueous solutions with various pH and salt concentration were studied. The potential energy was estimated by the DLVO theory and short range hydration forces and compared to the experimentally determined zeta potential. The strongest attraction between particles occurs at the isoelectric point (pH 4) and resulted in large aggregates, which gave relatively higher values of viscosity, yield stress, moduli, and shear thinning effects. The relative viscosity as a function of volume fraction was fitted to the Krieger and Dougherty model for all the suspensions. Oscillation measurements showed that the suspensions display elastic behaviour at low pH and viscous behavior at high pH. Furthermore, suspensions with high salt content had higher storage moduli. A power law dependency of storage moduli with volume fraction could be used to indicate the interaction strength between particles.  相似文献   

2.
Effects of heavy metals and oxalate on the zeta potential of magnetite   总被引:3,自引:0,他引:3  
Zeta potential is a function of surface coverage by charged species at a given pH, and it is theoretically determined by the activity of the species in solution. The zeta potentials of particles occurring in soils, such as clay and iron oxide minerals, directly affect the efficiency of the electrokinetic soil remediation. In this study, zeta potential of natural magnetite was studied by conducting electrophoretic mobility measurements in single and binary solution systems. It was shown that adsorption of charged species of Co(2+), Ni(2+), Cu(2+), Zn(2+), Pb(2+), and Cd(2+) and precipitation of their hydroxides at the mineral surface are dominant processes in the charging of the surface in high alkaline suspensions. Taking Pb(2+) as an example, three different mechanisms were proposed for its effect on the surface charge: if pH<5, competitive adsorption with H(3)O(+); if 56, precipitation of heavy metal hydroxides prevails. Oxalate anion changed the associated surface charge by neutralizing surface positive charges by complexing with iron at the surface, and ultimately reversed the surface to a negative zeta potential. Therefore the adsorption ability of heavy metal ions ultimately changed in the presence of oxalate ion. The changes in the zeta potentials of the magnetite suspensions with solution pH before and after adsorption were utilized to estimate the adsorption ability of heavy metal ions. The mechanisms for heavy metals and oxalate adsorption on magnetite were discussed in the view of the experimental results and published data.  相似文献   

3.
The effects of ion species, cation valence, ionic strength, and hydrated ionic radius on the zeta potential of quartz have been systematically studied through the measurement of zeta potential, sedimentation rate, and aggregation observation. The results show that the interaction between hydrolysis components and quartz particles results in three critical points – CR1, CR2, and CR3. The results of sedimentation and aggregation observation are in good agreement with the changes of the zeta potential in 0.1?M MgCl2, the maximum sedimentation rate being 99.26% at pH 10.85. When the pH is around 6.25 or 10.00, the sedimentation rate is relatively lower and the size of aggregation smaller. The adsorption of hydrolyzable multivalent metal ions on the quartz surface is a combination of three adsorption forms, namely electrostatic adsorption, hydroxyl complex adsorption, and hydroxide precipitation adsorption. Then the hydrolysis properties of metal ions and the surrounding environment determine the action of the hydrolysis components and the main form of adsorption.  相似文献   

4.
Abstract

The present paper deals with the surface charge properties and the dispersion stability of an aqueous titania suspension. Generally the titania powder surface is negatively charged. The dispersion stability of TiO2 suspension is governed by the value of zeta potential. The zeta potential was measured as a function of barium acetate and zinc acetate concentrations, at pH 6.0, and the addition of electrolytes caused sharp decrease of surface charge. Ethylenediaminetetraacetic acid (EDTA) was used to chelate the bivalent metal ions, so that the charge of counterions was reduced. The complexation of bivalent counterions favors the increase of the negative zeta potential and the dispersion stability of aqueous TiO2 suspension.  相似文献   

5.
Adsorption of cetyl trimethyl ammonium bromide (CTAB), and two commercial inhibitor base chemicals; an oleic imidazoline salt (OI) and a phosphate ester (PE), onto high purity, corroding iron particles was studied by zeta potential measurements in a 0.1 Wt% sodium chloride (NaCl) solution under 1 bar CO2 at 22°C. The particles were exposed to the inhibitor compounds for 24 hours before measurements were done. The results show that the measured zeta potential in the absence of inhibitor is zero at both pH 4.0 ± 0.2 and pH 5.8 ± 0.2. It is concluded that this might be caused by the electrochemical reactions occurring at the steel surface when placed in an electrical field. When adding inhibitor, which slows the electrochemical reactions at the steel surface, the zeta potential moves away from zero and an adsorption isotherm is obtained for all three inhibitors. The measured potential is probably a mixed potential where the apparent potential measured is a combination of the potential at the shear plane and a contribution form the electrochemical reactions occurring on the surface.  相似文献   

6.
Surface modification for stability of nano-sized silica colloids   总被引:4,自引:0,他引:4  
The surfaces of commercial 30-nm colloidal silica particles were modified by reacting with functional silanes. The high specific surface area and reactivity of the particles due to the small size make the process susceptible to irreversible aggregation not found previously with larger particles. This study compares surface charge results from different reaction conditions and characterization methods. Measurements of the zeta potential as a function of pH and gelation kinetics shed light on the mechanism of instability in nano-sized silica suspensions. Experimental results showed that very stable particles can be suspended in a nonaqueous solvent after refluxing of the silica particles, while maintaining the original particles physical properties of size and electrochemical behavior. Extremely stable particles are obtained by aminosilane surface modification. Factors affecting susceptibility of small particles to irreversible aggregation caused by a nonaqueous solvent or a high concentration of a trialkoxysilane, including the large amount of reactive silanol groups on the surface gel layer of the particles, are discussed.  相似文献   

7.
8.
The ice/water interface is a common and important part of many biological, environmental, and technological systems. In contrast to its importance, the system has not been extensively studied and is not well understood. Therefore, in this paper the properties of the H2O ice/water and D2O ice/water interfaces were investigated. Although the zeta potential vs pH data points were significantly scattered, it was determined that the isoelectric point (iep) of D2O ice particles in water at 3.5°C containing 10−3 M NaCl occurs at about pH 3.0. The negative values of the zeta potential, calculated from the electrophoretic mobility, seem to decrease with decreasing content of NaCl, while the iep shifts to a higher pH. The point of zero charge (pzc) of D2O ice and H2O ice, determined by changes in pH of 10−4 M NaCl aqueous solution at 0.5°C after the ice particle addition, was found to be very different from the iep and equal to pH 7.0 ± 0.5. The shift of the iep with NaCl concentration and the difference in the positions of the iep and pzc on the pH scale point to complex specific adsorption of ions at the interface. Interestingly, similar values of iep and pzc were found for very different systems, such as hydrophilic ice and highly hydrophobic hexadecane droplets in water. A comparison of the zeta potential vs pH curves for hydrophilic ice and hydrophobic materials that do not possess dissociative functional groups at the interface (diamond, air bubbles, bacteria, and hexadecane) indicated that all of them have an iep near pH 3.5. These results indicate that the zeta potential and surface charge data alone cannot be used to delineate the electrochemical properties of a given water/moiety interface because similar electrical properties do not necessary mean a similar structure of the interfacial region. A good example is the aliphatic hydrocarbon/water interface in comparison to the ice/water interface. Although the experiments were carried out with care, both the zeta potential, measured with a precise ZetaPlus meter, and ΔpH values (a measure of surface charge) vs pH were significantly scattered, and the origin of dissemination of the data points was not established. Differently charged ice particles and not fully equilibrium conditions at the ice/water interface may have been responsible for the dissemination of the data.  相似文献   

9.
The adsorption of cetylpyridinium chloride (CPC) and sodium dodecylbenzenesulfonate (SDBS) onto a ceramic glaze mixture composed of limestone, feldspar, quartz, and kaolin has been investigated. Both adsorption isotherms and the average particle zeta potential have been studied in order to understand the suspension stability as a function of pH, ionic strength, and surfactant concentration. The adsorption of small amounts of cationic CPC onto the primarily negatively charged surfaces of the particles at pH 7 and 9 results in strong attraction and flocculation due to hydrophobic interactions. At higher surfactant concentrations a zeta potential of more than +60 mV results from the bilayered adsorbed surfactant, providing stability at salt concentrations < or = 0.01 M. At 0.1 M salt poor stability results despite substantial zeta potential values. Three mechanisms for SDBS adsorption have been identified. When anionic SDBS monomers either adsorb by electrostatic interactions with the few positive surface sites at high pH or adsorb onto like charged negative surface sites due to dispersion or hydrophobic interactions, the magnitude of the negative zeta potential increases slightly. At pH 9 this increase is enough to promote stability with an average zeta potential of more than -55 mV, whereas at pH 7 the zeta potential is lower at about -45 mV. The stability of suspensions at pH 7 is additionally due to steric repulsion caused by the adsorption of thick layers of neutrally charged Ca(DBS)2 complexes created when the surfactant interacts with dissolved calcium ions from the calcium carbonate component.  相似文献   

10.
SiO2 coatings and inorganic/organic polymer hybrid coatings were applied onto textiles, and the textile properties were investigated with respect to parameters of textile comfort as stiffness, water uptake, and air permeability. Two different types of textiles (viscose and polyamide) were dip-coated with coating solutions of a pure silica sol and a polymer-modified silica sol. Only with low concentrated coating solutions a sufficient low stiffness and therefore an appropriate textile comfort could be realized. Analogously the water uptake of the treated textiles was decreased and sufficient high values were only reached with highly diluted coating solutions. Therefore, it was investigated whether such diluted coating solutions could be used for modification of textiles to add new beneficial properties. To reach hydrophobic textile properties one sol was modified with perfluorooctyltriethoxysilane. For antimicrobial functionalization a second sol was modified with silver. It was shown, for the application of new textile properties like water repellency or antimicrobial activity only concentrations ≤1% were necessary. In this case, the increase of textile stiffness was appropriate low, so the textile comfort was preserved while new functional properties were applied. Therefore, the presented diluted coating agents could be appropriate means for textile refinement and offer new textile applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1562–1568, 2010  相似文献   

11.
Previous studies have reported a lateral migration in particle electrophoresis through a straight rectangular microchannel. This phenomenon arises from the inherent wall‐induced electrical lift that can be exploited to focus and separate particles for microfluidic applications. Such a dielectrophoretic‐like force has been recently found to vary with the buffer concentration. We demonstrate in this work that the particle zeta potential also has a significant effect on the wall‐induced electrical lift. We perform an experimental study of the lateral migration of equal‐sized polystyrene particles with varying surface charges under identical electrokinetic flow conditions. Surprisingly, an enhanced focusing is observed for particles with a faster electrokinetic motion, which indicates a substantially larger electrical lift for particles with a smaller zeta potential. We speculate this phenomenon may be correlated with the particle surface conduction that is a strong function of particle and fluid properties.  相似文献   

12.
The interaction between organic latex polymers and the surface of hydrating cement was investigated by measuring the zeta potential and adsorbed amount of polymer on cement. First, differently charged model latex particles were synthesized in aqueous media by well-known emulsion polymerization technique. The latex polymers were characterized by differential scanning calorimetry (DSC), dynamic light scattering (DLS) and environmental scanning electron microscopy (ESEM). Electrokinetic latex surface properties were investigated by means of streaming potential measurements using a particle charge detector (PCD). It is shown that the anionic latexes adsorb a considerable amount of Ca2+ from the cement pore solution. Next, adsorption of the latex polymers on the surface of hydrating cement was confirmed by zeta potential measurements using the electroacoustic method. A water to cement ratio in the cement paste as low as 0.5 was studied, representing actual conditions in mortar and concrete. Additionally, adsorption isotherms were determined in a sedimentation test using the depletion method. For all latex polymers, Langmuir type adsorption isotherms were found. The latex dosages required to achieve saturated adsorption on the cement surface obtained from zeta potential measurements correspond well with those determined in the sedimentation test. Electron microscopy photographs confirm that the charged latex polymers adsorb selectively on surface areas of hydrating cement showing opposite charge. This way, domains of organic latex polymers exist on the cement surface. They provide adhesion between the inorganic cement matrix and the organic polymer film formed later on by particle coalescence as a result of cement hydration and drying.  相似文献   

13.
In the present study, adsorption isotherms of a polycarboxylic-acid-type biosurfantant, the sodium salt of (2-(2-carboxyethyl)-3-decyl maleic anhydride) (DCMA-3Na), on TiO2, zeta potential, and changes in particle aggregate size as a function of biosurfactant concentration, solid-liquid ratio and pH were systematically investigated. The adsorption of DCMA-3Na on the surface of TiO2 shows a relatively weak dependence on pH, unlike the adsorption behavior of chemically-synthesized surfactants. Adsorption of DCMA-3Na still occurs at pH above the isoelectric points of TiO2 due to the buffering capacity, which is due to three carboxylate functional groups in the hydrophilic moiety of DCMA-3Na. Since DCMA-3Na has three anionic head groups, the zeta potential of TiO2 at pH 3 decreases very steeply from positive to negative values as the surface charges are neutralized by the adsorption of biosurfactants. Trends in zeta potentials as a function of equilibrium DCMA-3Na concentration are quite closely related to the changes in flocculation of individual TiO2 particles.  相似文献   

14.
Adsorption of brush copolymers, bearing sulfonate groups and polyethylene glycol segments, on to alumina particles in suspension in water has been investigated. Study of the adsorption isotherms revealed that the copolymers displayed a strong affinity for the surface of the alumina regardless of the fraction of ionic groups on the polymer. For poly(ethylene glycol) content greater than 50%, the adsorption isotherms revealed an initial adsorption plateau followed by a second one. The shape of the adsorption isotherms was interpreted in terms of the polymer configuration at the solid-to-liquid interface. The effects of the pH and the ionic force on adsorption were studied and connected to the effects of interaction between chain segments at the surface of the alumina particles. Changes in the electrokinetic properties of the alumina particles after addition of the copolymers were investigated by following the zeta potential of particles as a function of pH. In the presence of the copolymer continuous shift of the isoelectric point IEP to a more acidic values was observed. Beyond a certain concentration the zeta potential remained negative regardless of the pH.  相似文献   

15.
Colloid particle deposition was applied to characterize fibrinogen (Fb) monolayers on mica, which were produced by controlled adsorption under diffusion transport. By adjusting the time of adsorption and the bulk Fb concentration, monolayers of desired surface concentration were obtained. The surface concentration of Fb was determined directly by AFM enumeration of single molecules adsorbed over the substrate surface. It was proven that Fb adsorbed irreversibly on mica both at pH 3.5 and at pH 7.4 with the rate governed by bulk transport. The electrokinetic properties of Fb monolayers produced in this way were studied using the streaming potential method. The dependence of the apparent zeta potential of Fb monolayers was determined as a function of the coverage. It was shown that for pH 3.5 the initial negative zeta potential of the mica substrate was converted to positive for Fb coverage exceeding 0.16. On the other hand, for pH 7.4, the zeta potential of a Fb-covered mica remained negative for the entire coverage range. The charge distribution in Fb monolayers was additionally studied using the colloid deposition method, in which negatively and positively charged polystyrene latex particles (ca. 800 nm in diameter) were used. An anomalous deposition of negative latex particles on substrates exhibiting a negative zeta potential was observed. Results of these experiments were quantitatively interpreted in terms of the fluctuation theory assuming that adsorption sites consisted of two and three Fb molecules, for pH 3.5 and 7.4, respectively. These results suggested that for pH 7.4, the distribution of charge on Fb molecules was heterogeneous, characterized by the presence of positive patches, whereas the average zeta potential was negative, equal to -19 mV. The utility of the colloid deposition method for studying Fb monolayers was further demonstrated in deposition experiments involving positive latex particles. It was shown that for a rather broad range of fibrinogen coverage, both the positive and the negative latex particles can adsorb on surfaces covered by Fb, which behaved, therefore, as superadsorbing surfaces. It was also concluded that the colloid deposition method can be used to determine the Fb bulk concentration for the range inaccessible for other methods.  相似文献   

16.
Silver nanoparticles (SNPs) are being increasingly used in many consumer products like textile fabrics, cosmetics, washing machines, food and drug products owing to its excellent antimicrobial properties. Here we have studied the adsorption and toxicity of SNPs on bacterial species such as Pseudomonas aeruginosa, Micrococcus luteus, Bacillus subtilis, Bacillus barbaricus and Klebsiella pneumoniae. The influence of zeta potential on the adsorption of SNPs on bacterial cell surface was investigated at acidic, neutral and alkaline pH and with varying salt (NaCl) concentrations (0.05, 0.1, 0.5, 1 and 1.5 M). The survival rate of bacterial species decreased with increase in adsorption of SNPs. Maximum adsorption and toxicity was observed at pH 5, and NaCl concentration of <0.5 M. A very less adsorption was observed at pH 9 and NaCl concentration >0.5 M, there by resulting in less toxicity. The zeta potential study suggests that, the adsorption of SNPs on the cell surface was related to electrostatic force of attraction. The equilibrium and kinetics of the adsorption process were also studied. The adsorption equilibrium isotherms fitted well to the Langmuir model. The kinetics of adsorption fitted best to pseudo-first-order. These findings form a basis for interpreting the interaction of nanoparticles with environmental bacterial species.  相似文献   

17.
The changes in electrokinetic properties of silica suspensions in the presence of 1,2-dipalmitoyl-sn-glycero-3-phospshocholine (DPPC) were investigated via zeta potential, mean diameter and transmittance determinations. Silica particles were precovered with monolayer (ML) or bilayer (BL) of the phospholopid from chloroform solution (SiO2/DPPC) or covered by DPPC adsorption from aqueous solution (SiO2+DPPC). The zeta potential and mean diameter of SiO2/DPPC suspension were measured as a function of NaCl concentration and due to the phospholipase A2(PLA2) action in 10?3 M NaCl solution and buffer Tris at pH=8 and 9. It was found that the DPPC adsorption onto silica surface decreases its the zeta potential, however the suspensions were stable during the experiment time, probably because of steric stabilization. During PLA2 enzyme action the changes in zeta potential were observed, which were caused by the hydrolysis products, especially palmitic acid molecules, which also had influence on the stability of these systems.  相似文献   

18.
The adsorption of fibrinogen on polystyrene latex particles was studied using the concentration depletion method combined with the AFM detection of residual protein after adsorption. Measurements were carried out for a pH range of 3.5-11 and an ionic strength range of 10(-3)-0.15 M NaCl. First, the bulk physicochemical properties of fibrinogen and the latex particle suspension were characterized for this range of pH and ionic strength. The zeta potential and the number of uncompensated (electrokinetic) charges on the protein were determined from microelectrophoretic measurements. It was revealed that fibrinogen molecules exhibited amphoteric characteristics, being on average positively charged for pH <5.8 (isolectric point) and negative otherwise. However, the latex particles did not show any isoelectric point, remaining strongly negative for this pH range. Afterward, systematic measurements of the electrophoretic mobility of fibrinogen-covered latex were carried out as a function of the amount of adsorbed protein, expressed as the surface concentration. A monotonic increase in the electrophoretic mobility (zeta potential) of the latex was observed in all cases, indicating a significant adsorption of fibrinogen on latex for pH below 11. It was also proven that fibrinogen adsorption was irreversible, with the maximum surface concentration varying between 2.5 and 5 × 10(3) μm(-2) (weight concentration of a bare molecule was 1.4 to 2.8 mg m(-2)). These measurements revealed two main adsorption mechanisms of fibrinogen: (i) the unoriented (random) mechanism prevailing for lower ionic strength, where adsorbing molecules significantly penetrate the fuzzy polymeric layer on the latex core and (ii) the side-on adsorption mechanism prevailing for pH > 5.8 and a higher ionic strength of 0.15 M. It was also shown that in the latter case, variations in the zeta potential with the protein coverage could be adequately described in terms of the electrokinetic model, previously formulated for planar substrate adsorption. On the basis of these experimental data, an efficient procedure of preparing fibrinogen-covered latex particles of controlled monolayer structure and coverage was envisaged.  相似文献   

19.
Stability and wetting properties changes of systems formed of phospholipid DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) layers covering silica particles or glass slides due to the phospholipase A2 (PLA2) action were determined by zeta potential measurements and the surface free energy evaluation, respectively. The comparison of the zeta potential and surface free energy, which was evaluated from advancing and receding contact angles via applying models of interfacial interactions, i.e. van Oss et al. (LWAB) and contact angle hysteresis (CAH), was found to be helpful for better understanding the mechanism of PLA2 action on the lipid layers, what is discussed in the paper.  相似文献   

20.
Negatively charged silica sol is known to lead to fouling of anion exchange membranes during electrodialysis (ED) as a result of its deposition on the membrane surface. It is known that the fouling potential is related to the physical and electrochemical properties of the silica particles as well as those of the anion exchange membranes. In this study, the properties of the silica sol were characterized in terms of its particle size, turbidity, and zeta potential in order to predict their effects on the electrodialysis performance. In the stability of colloidal particles, the critical coagulation concentrations of silica sol were determined as functions of ionic strength, cation species, and solution pH. In the electrodialysis of NaCl solution containing silica sol with various concentrations of CaCl(2), the colloidal behavior related to deposition and transport was examined during and after electrodialysis. The electrodialysis experiments clearly showed that the deposition and transport of silica sol during electrodialysis were related to the colloidal stability of dispersion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号