共查询到20条相似文献,搜索用时 0 毫秒
1.
James C. W. Chien Takashi Nozaki 《Journal of polymer science. Part A, Polymer chemistry》1993,31(1):227-237
Homopolymerization of ethylene and 1-hexene and their copolymerizations were compared to investigate the influence of α-olefin on the enhancement of ethylene polymerization rate (Rp), which is often referred to as the “comonomer” effect. With the two homogeneous Ziegler–Natta catalysts, Et[Ind]2ZrCl2/MAO and (π-C5H5)2ZrCl2/MAO (MAO = methylaluminoxane), hexene causes reduction of Rp—in other words a negative “comonomer” effect. In the case of the high activity MgCl2 supported TiCl3 catalysts there is a slight positive “comonomer” effect; the Rp increases by 25 to 70% with the addition of 15 mol % of hexene. The “comonomer” effects in there catalyst systems are much smaller than that observed for the classical TiCl3 catalyst. © 1993 John Wiley & Sons, Inc. 相似文献
2.
《先进技术聚合物》2018,29(6):1603-1612
In this study, polystyrene (PS) was melt blended with different amounts of poly1‐hexene (PH) and poly(1‐hexene‐co‐hexadiene) (COPOLY) and the blends were compared with conventional PS/polybutadiene (PS/PB) one. Scanning electron microscope revealed that the dispersion of PH and COPOLY in PS matrix was more uniform with the appearance of small particles in PS matrix; however, in the case of PS/PB blends, the fracture surface showed nonhomogenous morphology with the appearance of bigger rubber particles. Based on Differential Scanning Calorimetry (DSC) and dynamic mechanical thermal analysis results, Tg of the blends decreased in comparison with it in neat PS. Impact strength of PS/PH and PS/COPOLY blends was considerably higher than that in PS/PB and significantly higher than the value for neat PS. Tensile test showed substantial improvement in stress at yield and better elongation at break for COPOLY containing blend than the samples containing PH and PB rubbers. Also, blending of PS with 10% of the rubbers was considered in the presence of dicumylperoxide as a probable grafting/cross‐linking agent to produce XPS/COPOLY10 and XPS/PB10 samples, respectively. IR results of the nonsoluble solvent extracted gel showed that COPOLY and PB were grafted to PS matrix during melt blending, which caused higher impact strength in the related samples. 相似文献
3.
The very early stages of gas‐phase ethylene polymerization on an SiO2‐supported Ziegler–Natta catalyst were studied with the help of a short‐stop reactor. The short‐stop‐reactor‐based technique was useful in studying nascent polymerization, providing insights at very short, controlled times into important phenomena regarding catalyst fragmentation and the activation and deactivation of catalyst sites that take place during the very early stages of the reaction. Experimental results indicate that the growth of the polymer chains occurs at unsteady conditions during the initial stages of the polymerization. Hydrogen has a strong influence on the initial kinetics, leading to a significant decrease of polymerization activity. Polymer crystallinity increases with the reaction time, probably due to the formation of long chains with a high degree of crystallinity.
4.
Maria M. V. Marques Clemente Pedro Nunes Peter J. T. Tait Alberto Romo Dias 《Journal of polymer science. Part A, Polymer chemistry》1993,31(1):219-225
This article describes studies on the variables that regulate the molecular weight in ethylene polymerization using a highly active Ziegler–Natta catalyst with hydrogen for molecular weight control. The dependence of the degree of polymerization on the concentration of catalyst, cocatalyst, monomer, partial pressure of hydrogen, and temperature has been established. The rate constant for chain transfer with cocatalyst has been evaluated. © 1993 John Wiley & Sons, Inc. 相似文献
5.
Fengshou Liu Haiyang Gao Zhilong Hu Haibin Hu Fangming Zhu Qing Wu 《Journal of polymer science. Part A, Polymer chemistry》2012,50(18):3859-3866
1‐Hexene polymerizations catalyzed by α‐diimine nickel complexes after activation with modified methylaluminoxane were performed at various reaction temperatures. Effects of catalyst structure and polymerization temperature on activity and polymer microstructure were evaluated in detail. Bulky catalyst 1b with camphyl backbone exhibited good control ability and greatly enhanced thermal stability to be capable of polymerizing 1‐hexene at 80°C. The poly(1‐hexene)s with long methylene sequences and dominate branches (methyl and butyl) were synthesized using catalyst 1b . Differential scanning calorimetry analysis further confirmed that long polymethylene block (? (CH2)n? , n > 20) was formed in the poly(1‐hexene)s with melting point of 64°C obtained by catalyst 1b on the basis of initial branched model polyethylene. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
6.
J. Gonzalo Rodríguez Antonio Lafuente Rosa Martín‐Villamil 《Journal of polymer science. Part A, Polymer chemistry》2005,43(23):5987-5997
Poly(p‐methoxyphenylacetylene) was obtained by the reaction of p‐methoxyphenylacetylene (MOPA) with the vanadium acetylacetonate‐aluminum triethyl V(acac)3‐AlEt3 homogeneous catalyst system. The crude product was always a mixture of 1,2,4‐ and 1,3,5‐tris(p‐methoxyphenyl)benzene and poly(MOPA) of low averaged molecular weight. The 1,2,4‐ and 1,3,5‐cyclotrimers versus poly(MOPA) ratio was analyzed. The poly(MOPA) obtained under different conditions, on the basis of the spectroscopic data, always shows a cis–transoidal stereo‐regular structure. Molecular mass of poly(MOPA) was determined by vapor pressure osmometry, high pressure liquid chromatography (HPLC), and gel permeation chromatography (GPC) techniques. The kinetics of the reaction has been also analyzed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5987–5997, 2005 相似文献
7.
Shuwei Wang Na Feng Jiulai Zheng Keun‐Byoung Yoon Dongho Lee Minjie Qu Xuequan Zhang Hexin Zhang 《先进技术聚合物》2016,27(10):1351-1354
In the present article, a novel hollow spherical lignin‐supported vanadium‐based Ziegler–Natta catalyst was synthesized. The active centers of the obtained catalyst well dispersed in the lignin through the SEM‐EDX analysis. The resultant catalyst was investigated in ethylene polymerization and found to exhibit remarkable catalytic activity upon activation with ethylaluminium sesquichloride cocatalyst and ethyl trichloroacetate activator. During the polymerization, the lignin was gradually exfoliated by the polymerization force arising from the propagation of ethylene chain. The resultant PE/lignin nanocomposites preformed higher thermal stability compared to virgin PE. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
8.
Andrew K. Yaluma Peter J. T. Tait John C. Chadwick 《Journal of polymer science. Part A, Polymer chemistry》2006,44(5):1635-1647
Active center determinations on different Ziegler–Natta polypropylene catalysts, comprising MgCl2, TiCl4, and either a diether or a phthalate ester as internal donor, have been carried out by quenching propylene polymerization with tritiated ethanol, followed by radiochemical analysis of the resulting polymers. The purpose of this study was to determine the factors contributing to the high activities of the catalyst system MgCl2/TiCl4/diether—AlEt3. Active center contents (C*) in the range 2–8% (of total Ti present) were measured and a strong correlation between catalyst activity and active center content was found, indicating that the high activity of the diether‐containing catalysts is due to an increased proportion of active centers rather than to a difference in propagation rate coefficients. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1635–1647, 2006 相似文献
9.
Wen‐Da Li Jian‐Bing Zeng Yi‐Dong Li Xiu‐Li Wang Yu‐Zhong Wang 《Journal of polymer science. Part A, Polymer chemistry》2009,47(21):5898-5907
A series of aliphatic–aromatic multiblock copolyesters consisting of poly(ethylene‐co‐1,6‐hexene terephthalate) (PEHT) and poly(L ‐lactic acid) (PLLA) were synthesized successfully by chain‐extension reaction of dihydroxyl terminated PEHT‐OH prepolymer and dihydroxyl terminated PLLA‐OH prepolymer using toluene‐2,4‐diisoyanate as a chain extender. PEHT‐OH prepolymers were prepared by two step reactions using dimethyl terephthalate, ethylene glycol, and 1,6‐hexanediol as raw materials. PLLA‐OH prepolymers were prepared by direct polycondensation of L ‐lactic acid in the presence of 1,4‐butanediol. The chemical structures, the molecular weights and the thermal properties of PEHT‐OH, PLLA‐OH prepolymers, and PEHT‐PLLA copolymers were characterized by FTIR, 1H NMR, GPC, TG, and DSC. This synthetic method has been proved to be very efficient for the synthesis of high‐molecular‐weight copolyesters (say, higher than Mw = 3 × 105 g/mol). Only one glass transition temperature was found in the DSC curves of PEHT‐PLLA copolymers, indicating that the PLLA and PEHT segments had good miscibility. TG curves showed that all the copolyesters had good thermal stabilities. The resulting novel aromatic–aliphatic copolyesters are expected to find a potential application in the area of biodegradable polymer materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5898–5907, 2009 相似文献
10.
Vincenzo Busico Roberta Cipullo Sara Ronca Peter H. M. Budzelaar 《Macromolecular rapid communications》2001,22(17):1405-1410
Results of propene polymerization in the presence of two known octahedral C2‐symmetric Zr complexes bearing tetradentate [ONNO]‐type ligands are reported for the first time. Depending on the steric hindrance at the active metal, isotactic site‐controlled or weakly syndiotactic chain‐end‐controlled polymers were obtained, in both cases via highly regioselective 1,2 (primary) monomer insertion. In this respect, the complexes mimic the behavior of the active Ti species on the surface of the heterogeneous Ziegler‐Natta catalysts of which they might represent good structural models. 相似文献
11.
Yuwei Fang Boping Liu Kouichi Hasebe Minoru Terano 《Journal of polymer science. Part A, Polymer chemistry》2005,43(19):4632-4641
Phillips catalyst has been contributing to about 40% of world high‐density polyethylene production because of its ability to give products with unique microstructures like broad molecular weight distribution as well as short and long chain branches. Even after 50 years' effort, some crucial problems concerning the nature of active sites, polymerization, and branching mechanisms are still kept mysterious. In this work, ethylene and 1‐hexene copolymerization with Phillips catalyst prereduced by CO was carried out in the presence of triethyl aluminum (TEA) cocatalyst. The microstructures of polymers were investigated by 13C NMR and gel permeation chromatography (GPC) methods. A hybrid‐type kinetics was found for both homo‐ and copolymerization kinetics, which indicated that there existed two types of active sites namely site A and site B. Site A with instant activation, high activity, and fast decay was transformed from a metathesis site, namely Cr(II) site, coordinated with CO or CO2 through desorption of CO or CO2 by TEA, which contributed to the formation of short chain branches, especially methyl branches. Site B with slow activation, low activity, and slow decay was generated from reduction of residual chromate (VI) by TEA. Both 1‐hexene and TEA can decrease the molecular weight of polyethylene as well as enhance short chain branching. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4632–4641, 2005 相似文献
12.
13.
Xia Zhao George Odian Albert Rossi 《Journal of polymer science. Part A, Polymer chemistry》2000,38(20):3802-3811
1‐Hexene was polymerized by rac‐(dimethylsilyl)bis(4,5,6,7‐tetrahydro‐1‐indenyl)zirconium dichloride catalyst and methylaluminoxane cocatalyst over the temperature range 0–100 °C. The polymerization rate, polymer molecular weight, and polymer microstructure (stereospecificity and regiospecificity) were studied as a function of the temperature and the concentrations of monomer, catalyst, and cocatalyst. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3802–3811, 2000 相似文献
14.
L. Sun C. C. Hsu D. W. Bacon 《Journal of polymer science. Part A, Polymer chemistry》1994,32(11):2127-2134
Polymer-supported Ziegler–Natta catalysts based on various polymer carriers were synthesized by different methods, including (1) loading TiCl4 directly onto the polymer supports; (2) loading TiCl4 onto the polymer supports modified by magnesium chloride (MgCl2); (3) loading TiCl4 onto the polymer supports modified by Grignard reagent (RMgCl); and (4) loading TiCl4 onto the polymer supports modified by magnesium alkyls (MgR2). The activity and kinetic features of the catalysts for ethylene polymerization were examined. Among the combinations tested, the best was found to be TiCl4/n-Bu2Mg.Et3Al/poly(ethylene-co-acrylic acid) (92:8), which produced a catalyst of very high activity for ethylene polymerization. © 1994 John Wiley & Sons, Inc. 相似文献
15.
A simplified kinetic scheme of eythylene/α‐olefin copolymerization has been developed by adding reactions responsible for the unusual kinetic behavior to a general mechanism. The estimation of rate constants has been simplified by making physically meaningful initial guesses. Rate constants affecting yield, MWD and comonomer content have been estimated separately. Experiments were designed to investigate the effects of each rate constant independently. The obtained rate constants show that the sites which are responsible for formation of short chains with higher 1‐butene content are more active at the beginning of polymerization, while the sites which are responsible for formation of longer chains with lower 1‐butene units are more active at the final stages of polymerization.
16.
Effects of Alterations to Ziegler–Natta Catalysts on Kinetics and Comonomer (1‐Butene) Incorporation 下载免费PDF全文
Various MgCl2‐supported Ziegler–Natta (ZN) catalysts are synthesized with the intention to influence polymerization performance and 1‐butene incorporation in an ethylene copolymer. Modifications are introduced during different steps in the synthesis process, namely support preparation, titanation, and catalyst workup. While multiple different effects are observed upon modification, heat treatment during titanation shows the greatest impact. Increasing the heat‐treatment temperature increases polymerization activity. More importantly, the 1‐butene distribution can be shifted toward a more homogeneous profile. The amount of 1‐butene incorporated is similar to both for short‐ and for very long‐chain molecules. This behavior has so far been known only from metallocene‐based polyethylene and suggests that active sites are distributed more homogeneously in the ZN catalyst.
17.
Yury V. Kissin Vladimir P. Marin Patricia J. Nelson 《Journal of polymer science. Part A, Polymer chemistry》2017,55(23):3832-3841
Medium‐ and high‐resolution SEM analysis of several Ti‐based MgCl2‐supported Ziegler–Natta catalysts and isotactic polypropylene produced with them is carried out. Each catalyst particle, 35–55 μ in size, produces one polymer particle with an average size of 1.5–2 mm, which replicates the shape of the catalyst particle. Polymer particles contain two distinct morphological features. The larger of them are globules with Dav ~400 nm; from 1 to 2 × 1011 globules per particle. Each globule represents the combined polymer output of a single active center. The globules consist of ~2500 microglobules with an average size of ~20 nm. The microglobules contain several folded polymer molecules; they are the smallest thermodynamically stable macromolecular ensembles in propylene polymerization reactions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3832–3841 相似文献
18.
Yury V. Kissin 《Macromolecular theory and simulations》2002,11(1):67-76
The previously developed kinetic scheme for olefin polymerization reactions with heterogeneous Ziegler–Natta catalysts states that the catalysts have several types of active centers which have different activities, different stabilities, produce different types of polymer materials, and respond differently to reaction conditions. In the case of ethylene polymerization reactions, each type of center exhibits an unusual chemical feature: a growing polymer chain containing one ethylene unit, Ti—C2H5, is unusually stable and can decompose with the formation of the Ti—H bond. This paper examines quantitative kinetic ramifications of this chemical mechanism. Modeling of the complex kinetics scheme described in the Scheme demonstrates that it correctly and quantitatively predicts three most significant peculiarities of ethylene polymerization reactions, the high reaction order with respect to the ethylene concentration, reversible poisoning with hydrogen, and activation in the presence of α‐olefins. 相似文献
19.
Songsu Kang Robert J. Ono Christopher W. Bielawski 《Journal of polymer science. Part A, Polymer chemistry》2013,51(18):3810-3817
Novel rod–coil–rod ABA triblock copolymers, poly(3‐hexylthiophene)‐block‐poly(ethylene)‐block‐poly(3‐hexylthiophene) (P3HT‐b‐PE‐b‐P3HT) were synthesized by using a combination of a Ru‐catalyzed ring‐opening metathesis polymerization of 1,4‐cyclooctadiene in the presence of a suitable chain transfer agent (CTA) and a Ni‐catalyzed Grignard metathesis polymerization of 5‐chloromagnesio‐2‐bromo‐3‐hexylthiophene followed by hydrogenation. Using this methodology, the molecular weights of the poly(butadiene) (PBD) or the P3HT blocks were controlled by adjusting the initial monomer/CTA or the initial monomer/macroinitiator ratio, respectively. In addition, the triblock structure was confirmed by selective oxidative degradation of the PBD block found in the intermediate P3HT‐b‐PBD‐b‐P3HT copolymer produced in the aforementioned method, followed by analysis of the degradation products. Thermal analysis and atomic force microscopy of P3HT‐b‐PE‐b‐P3HT revealed that the material underwent phase separation in the solid state, a feature which may prove useful for improving charge mobilities within electronic devices. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3810–3817 相似文献
20.
David Ribour Valérie Bollack‐Benoit Vincent Monteil Roger Spitz 《Journal of polymer science. Part A, Polymer chemistry》2007,45(17):3941-3948
Chemical treatments of classical supported Ziegler–Natta precatalysts were conducted by using additional bulky ligands to attempt to narrow and homogenize the active sites distribution in propylene polymerization. Additions of monodentate ligands such as bis(trimethylsilyl)amide, cyclopentadienyl derivates or triphenylsilanol were seen to slow down the polymerization without modifying the distribute properties of polypropylenes. In the case of multidentate ligands (porphines or biquinolines), in addition to the poisoning of active sites, an extraction of titanium from the catalyst surface is observed. A decrease of both melting point and isotacticity (II%) of polymers using these compounds suggest that the most isospecific titanium sites are first extracted from the MgCl2‐surface. The narrowing of the molecular weight distribution confirms that the highly isospecific sites are the most active sites, producing the higher molecular weight polymers. Moreover, this study shows that the distributed properties of polymers are due to the chemical diversity of the active sites with various steric and electronic environments at the catalyst surface and not to mass transfer limitations. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3941–3948, 2007 相似文献