首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
冷气掺混对高压涡轮流场结构影响的数值分析   总被引:2,自引:0,他引:2  
燃气涡轮发动机中的冷气与主流掺混会带来一定的气动损失,造成发动机总体性能下降。本文在三维N-S程序的基础上,引入一种较为简单的冷气射流计算模型,对一级高压涡轮含有冷气掺混的三维流场进行了数值分析,揭示了冷气掺混对导叶流量特性及损失分布的影响,并通过涡轮叶片排二次流动结构的分析初步探讨了冷气掺混损失机理。  相似文献   

2.
考虑冷气掺混的涡轮分层次气动优化设计体系   总被引:4,自引:0,他引:4  
通过将优化理论引申到涡轮气动设计体系中,建立具有自动优化设计能力的燃气涡轮分层次优化设计体系,给出优化设计体系框图和计算系统的基本架构,分析了各层次优化设计解决的问题和解决问题的过程.为了实现三维多级优化,介绍了基于流场分析的局部优化策略和参数组群组合优化.为适应燃气轮机涡轮的气动设计,在这一体系中每一个程序都要考虑冷气掺混.实例表明,该设计体系下的设计过程快速高效.  相似文献   

3.
涡轮三维叶栅的气热耦合数值模拟   总被引:4,自引:0,他引:4  
本文借助数值模拟技术分析了三维跨音速涡轮导向叶栅不同壁面边界条件对流场流动状况的影响,壁面边界分别采用绝热、等温、耦合换热三种条件。通过对计算结果的分析表明,不同叶片表面边界条件对流场温度场有很大影响,对流场内的压力场及其它参数也有明显影响,因此在气冷涡轮设计中使用多场耦合技术进行数值模拟是非常必要的。  相似文献   

4.
提高气冷涡轮气热耦合计算精度的措施   总被引:1,自引:0,他引:1  
温度场计算的准确性对气冷涡轮的设计影响极大.实际的气冷涡轮在运行状态下,存在多种物理现象:冷气带来的燃气组分变化、湍流、转捩、温度边界层的发展变化、热辐射等.而在数值计算中,计算结果也要受到网格质量的影响.采用自编程序、商业CFD软件对某两级气冷涡轮、C3X以及MARK Ⅱ叶片进行计算,分别描述冷气组分变化、计算网格、湍流模型以及转捩温度场模拟精度的影响;同时定性分析温度边界层复合性质与辐射换热对温度计算的影响.得出在气热耦合计算中,考虑上述因素的影响是很有必要的.  相似文献   

5.
本文介绍的气冷涡轮性能预测是以一元特性计算方法为基础的,其中考虑了涡轮叶栅的叶型损失、二次流损失、漏气损失和尾缘损失,还引入了气冷涡轮的掺混损失。并将损失模型计算的不同攻角的损失系数分布与CFD模拟结果进行了对比。根据涡轮级动叶不同的工作状态,选取不同的自变量组合形式,使其能够用于计算亚音速、跨音速、有冷却和无冷却涡轮的性能。最后针对某型涡轮给出了性能预测结果。  相似文献   

6.
涡轮叶栅双排孔气膜冷却数值模拟   总被引:4,自引:2,他引:2  
采用具有三阶精度TVD性质的有限差分格式、自由型曲面技术以及分区网格算法,对某型具有冷气孔形状的涡轮叶栅进行了全三维N-S方程数值求解,描述了相邻两排冷气射流在叶栅吸力面形成的冷却气膜以及壁面附近冷却射流运动的特点,分析了不同吹风比和喷射角度情况下冷却绝热效率的分布规律。结果表明,在较大的吹风比和喷射角下,交错排列的两排冷却射流运动规律非常复杂,在两排孔之间的区域与冷气孔下游区域冷却气膜的形成规律具有明显的区别。  相似文献   

7.
前缘逆主流喷射冷气时涡轮叶栅流场性能研究   总被引:4,自引:0,他引:4  
前缘逆主流喷射冷气对壁面静压有明显影响;冷气与主流掺混及卵型涡的形成导致近叶片表面处能量损失增加;吸力面或压力面根部出现与通道涡旋向相同或相反的涡系;卵型涡能够以一定形式保持到叶栅出口并与尾迹作用,使出口处气动参数剧烈变化.  相似文献   

8.
本文利用数值模拟方法详细研究了缩放型流道叶栅中从六个不同轴向位置处以不同的质量流量比喷射冷气对叶栅流场性能的影响,对比分析了能量损失系数、叶表静压分布、流道内马赫数分布等,结果表明冷气喷射对叶栅性能的影响和内伸波的影响是不同的。叶栅性能的变化主要是由于冷气喷射导致叶型损失的变化引起的,当冷气从吸力面内伸波作用位置附近及前缘滞止线附近喷射时,冷气与主流的掺混剧烈且持续到叶栅出口处,使得叶栅损失增加;当冷气从压力面和吸力面喉口位置处射流时,叶栅损失减小。在吸力面内伸波反射点附近射流时,由于冷气的滞止作用使得冷气孔前的压力增大,进而减小内伸波前后压差,减弱内伸波强度。  相似文献   

9.
采用4种不同的湍流模型对叶片表面带小孔射流的环形涡轮叶栅内部流场进行数值计算,并与热线实验测量结果进行了对比.结果表明,由于射流尾迹的影响,在射流附近靠近壁面处产生二次流,二次流随着射流下游距离的增大逐渐减弱.比较不同湍流模型的计算结果发现,采用κ-ε模型在射流尾迹区域和与主流掺混区域的计算结果与实验吻合较好,B-L模型在近壁面的速度计算结果偏大,其对尾迹区域二次流的捕捉也较差.  相似文献   

10.
涡轮叶尖泄漏流动对涡轮通道内流动损失有着显著影响,叶顶冷气射流对控制叶尖泄漏流动和改善涡轮叶尖气热性能有重要意义.本文利用数值模拟方法,研究了叶顶冷气喷射位置和喷射流量对高压涡轮凹槽叶顶间隙泄漏流动控制的影响.文中重点分析了泄漏流动结构及涡轮气动效率的变化,探讨了冷气对刮削涡这一间隙内主控流动结构演化的影响.研究表明,...  相似文献   

11.
空冷透平静叶气膜冷却数值研究   总被引:3,自引:2,他引:3  
为了深入了解空冷透平气膜冷却机理及三维流动特性,对某型燃气轮机透平静叶进行了详细的数值模拟。计算采用三维N-S方程有限体积解法,湍流模型为标准k-ε模型加改进的壁面函数方法,网格为非结构。计算域扩展到多排气膜冷却孔及与其相连的冷气通道内,求解亦包含所有冷却孔内部流动。根据计算结果重点对前缘气膜冷却复杂三维流动以及整个叶片的气膜冷却特性进行分析。  相似文献   

12.
发汗冷却中流动与换热的数值模拟   总被引:5,自引:1,他引:5  
本文采用改进的低Re数k-ε模型-低Re数kθ-εθ模型以及局部非热平衡模型,将主流区和多孔壁面区进行耦合,通过数值模拟研究了发汗冷却过程中的流动与换热问题。计算结果表明:多孔壁面中靠近主流区的部分温度梯度很大;随着冷却剂流量的增大,壁面上的最高温度明显下降;就本文所选取的参数而言,在发汗冷却所用的冷却剂的量占总流量的1%左右时,冷却效果非常明显。  相似文献   

13.
平面叶栅气膜冷却流动的数值模拟   总被引:1,自引:0,他引:1  
为了能够准确地对透平叶栅气膜冷却效率进行数值预测,本文采用了FNM形式的结构化网格,对一个平面叶栅中的气膜冷却流场进行了数值模拟。计算中采用了包括LU-SGS-GE隐式格式和改良型高精度、高分辨率的MUSCL TVD格式的时间推进算法求解三维RANS方程以及低Reynolds数q-ω双方程湍流模型。计算结果表明本文采用的模型及方法在低吹风比的条件下可以较准确地对气膜冷却效率进行数值预测。  相似文献   

14.
跨音透平级动叶顶部间隙流动的数值模拟   总被引:4,自引:0,他引:4  
本文对一个跨音透平级动叶顶部间隙内的泄漏流动进行了详细的数值模拟,并与没有顶部间隙时的情况进行了对比。计算表明在90%叶高以上的区域内,间隙内的泄漏流动使得动叶出口相对气流角较无间隙有很大改变。这将极大地影响本级和下一级的效率。  相似文献   

15.
平面叶栅中的湿蒸汽两相结流动数值模拟   总被引:4,自引:3,他引:4  
对存在自发凝结的湿蒸汽两相流动建立了完全欧拉坐标系下的数值模型.考虑水蒸汽与理想气体的偏差,引入维里型状态方程对模型作了进一步完善.对平面叶栅中的两相凝结流动进行了数值模拟,计算结果与实验值比较表明本文计算模型正确,可以扩展到三维复杂两相凝结流场的计算.  相似文献   

16.
多级轴流压气机三维气动设计的一种快速方法   总被引:1,自引:0,他引:1  
本文提出了一种适用于多级压气机的快速三维数值气动设计方法,该方法的核心是应用一种快速网格生成技术和NS方程求解器之间不断的相互迭代,最终得到各叶片排的三维叶片造型。首先给定流量,压比和压气机子午通道的几何形状。在初始设计阶段通过计算得到各叶片排沿叶高周向平均的进出口气流角分布,并把其作为计算的目标参数。然后通过网格生成和NS求解之间的迭代,不断调整目标参数,直到计算收敛。应用本方法设计了一台具有三个重复级的实验用轴流低速压气机。  相似文献   

17.
本文通过对MIXA06实验的模拟来研究发生在核反应堆严重事故情况下的燃料与冷却剂相互作用(FCIs)细粒化混合过程.采用基于泰勒不稳定性的水力学细粒化模型,对这种高温熔融物与低温冷却剂接触时的强烈热物理作用过程进行数值计算和预测,研究在低韦伯数条件下水力学细粒化模型的适用性.计算结果和参数敏感性分析结果表明,水力学模型低估了熔融液滴的细粒化率.  相似文献   

18.
考虑空气柱的水力旋流器内流场的数值模拟   总被引:1,自引:0,他引:1  
对水力旋流器内流场进行了数值模拟.旋流器内液相和气相的湍流模拟采用了雷诺应力模型(RSM),边界条件采用速度进口、压力出口.在同一工况下选用三维模型及二维简化模型、分别用VOF模型及刚盖法对空气柱进行处理,就空气柱形成、切向及轴向速度与相同条件下试验测量的结果进行比较.结果表明,三维模型计算结果较二维简化模型与实验值吻合得更好,但二维简化模型在降低精度不大的前提下大大减少了计算时间.对空气柱的处理,选用VOF模型得到的结果更准确,而刚盖法减少了计算用时.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号