首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The triplet state of positronium, o-Ps, is used as a probe to characterize a starch-20% w/w sucrose matrix as a function of temperature (T). A two-step decomposition (of sucrose, and then starch) starts at 440 K as shown by a decrease in the o-Ps intensity (I(3)) and lifetime (τ(3)), the latter also disclosing the occurrence of a glass transition. Upon sucrose decomposition, the matrix acquires properties (reduced size and density of nanoholes) that are different from those of pure starch. A model is successfully established, describing the variations of both I(3) and τ(3) with T and yields a glass transition temperature, T(g) = (446 ± 2) K, in spite of the concomitant sucrose decomposition. Unexpectedly, the starch volume fraction (as probed through thermal gravimetry) decreases with T at a higher rate than the free volume fraction (as probed through PALS).  相似文献   

2.
Journal of Thermal Analysis and Calorimetry - The aim of this study is to characterize adsorbed liquid in montmorillonite structure for different levels of adsorption by both thermoanalytical and...  相似文献   

3.
In this study, polycarbonate (PC) and polystyrene (PS) are subjected to plastic deformation by means of cold rolling and the resulting variation of the free volume and its subsequent time evolution after rolling is investigated by means of positron annihilation lifetime spectroscopy (PALS). The value of the long lifetime component that is attributed to the decay of ortho-positronium (tau(o-Ps)) and its intensity (I(o-Ps)) are used to characterize, respectively, the size and the concentration of the free-volume holes. In addition to the PALS experiments, the effect of plastic deformation on the dynamic tensile modulus is investigated. The PALS results show that both for well-aged PC and PS an increase of tau(o-Ps) and a decrease of I(o-Ps) occur upon plastic deformation. During the subsequent aging, tau(o-Ps) tends to return to the value assumed before plastic deformation, while I(o-Ps) remains constant with time. These results corroborate the idea of an amorphous-amorphous transition, rather than that of a "mechanical rejuvenation" as proposed in the past to explain the ability of plastic deformation to reinitiate physical aging. Finally, a linear relation between the size of the free-volume holes and the dynamic tensile modulus is found, which suggests that the stiffness of amorphous glassy polymers is fully determined by their nanoscopic structure.  相似文献   

4.
Positron annihilation lifetime spectroscopy (PALS) is used to probe structural changes in glassy polycarbonate in terms of changes in the hole volume and the number density of holes during fatigue (cyclic stress) aging. The ortho-positronium (o-Ps) pickoff annihilation lifetime τ3, as well as the intensity I3, were measured as a function of cyclic stresses and various previous thermophysical aging histories. It is found that τ3, the longest of the three lifetime components resolved in the PALS of glassy polycarbonate, increases when a cyclic stress is applied. These results indicate that there is a structural change during fatigue aging. The “holes” where o-Ps can localize become larger upon fatigue aging. These results also suggest that a significant distinction exists between structural changes induced by thermophysical aging and fatigue aging. The o-Ps annihilation intensity, which is a relative measure of the hole density in a material, showed a continuous decrease upon fatigue aging, indicating the possibility of hole coalescence, which could be a precursor of crazing. The interaction between thermophysical aging and fatigue aging corresponds very well with the enthalpy relaxation behavior as reported previously, viz., a well-aged sample is much more sensitive to cyclic stress. More importantly, it is hypothesized that fatigue failure initiation is probably closely related to hole size and density fluctuation.  相似文献   

5.
The analysis of annihilation characteristics of ortho-positronium at conventional calorimetric glass transition temperatures for a series of amorphous polymers reveals empirical correlations of average lifetime of o-Ps , and of its product with a relative intensityI 3g with appropriateT g DSC values. These trends in terms of free volume mean that both the average size of free volume hole entityv hg and the fractional free volume grow with increasingT g DSC . The results are discussed considering the chemical microstructure as well as possible mechanisms acting in glass transition. A relation is indicated between geometric and flexibility characteristics of chains and thev hg andf g parameters of free volume microstructure on the one side and potential motional processes responsible for solidification of the amorphous system on the other side.  相似文献   

6.
7.
The swelling of poly(TRIM) spherical particles in TEOS is assessed as a potential way for obtaining polymer-silica nanocomposite materials. Silica deposition was achieved by simply stirring of swollen polymer particles in acidic hydrochloric-water solution. This procedure leads to spherical composite particles with dispersed silica gel within the polymer matrix. The resulting material exhibits the same morphology as the initial polymer. Nanocomposite particles are silica rich (about 17 wt.%). Characterization of the nanocomposites was performed using scanning electron microscopy, FT-IR spectroscopy, (29)Si CP MAS NMR spectroscopy and thermogravimetry. Moreover, the use of positron annihilation lifetime spectroscopy PALS to characterize the structural properties of the nanocomposites is presented. This technique gave more realistic pieces of information about the pore structure of the investigated samples in contrast to nitrogen adsorption studies.  相似文献   

8.
The rate constants for the reactions of positronium with I 3 , Br, and I in dimethylsulphoxide (DMSO) and for I 3 in water have been determined, and the orthopositronium lifetime variations have been used for studying polyhalide formation in the (I2+Br)/DMSO system. It is found that the formation of more than one polyhalide is needed to account for the data. On basis of this new evidence, previous results in methanol and in DMSO are re-examined. Besides the primary I2X (X: halide), I2X 2 2− complexes have to be invoked. Trial absorption measurements confirm the presence of solvolysis equilibria for I2 in DMSO. Taking these facts into account, much higher, albeit poorly defined, values than previously reported are found for the I2X formation constants. The reliable Kc values deduced are 28M−1, 0.57M−1 and 2.5M−1 respectively for I2Cl, I2Cl 2 2 and I2Br 2 2− in methanol, and 1.4M−1 and 0.8M−1, respectively for I2Cl 2 2− and I2Br 2 2− in DMSO.  相似文献   

9.
Positron annihilation lifetime spectroscopy has been identified as an effective means of characterizing the free volume content of amorphous polymers. The lifetime and intensity of the ortho-positronium (o-Ps) pick-off annihilation has been found to correlate with the average size and density of free volume sites, respectively. Recently, PALS has been used to evaluate and monitor the physical aging and structural relaxation of polymers in terms of both initial state and evolution in state with time. However, during extended PALS measurements in insulating materials, an electric field can build up due to positron-electron annihilation and can effectively reduce the probability of positronium formation. In this paper, an observed decrease in intensity associated with the o-Ps annihilation component in the glassy polymers polycarbonate and polystyrene is found to be unrelated to structural relaxation of the materials over the time periods examined as reported earlier by others, and, instead, to be more likely a result of electric charge build-up. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
11.
Radiation exposure modifies the nano scale free volume of the polymers which has direct correlation to certain properties of polymeric materials. CR-39 (DOP) polycarbonate polymeric films were exposed to gamma radiation at different doses for the study of nano scale free volume as well as structural and optical properties. An overall increase in the number of free volume holes at all doses was observed. UV–visible studies showed an improvement in the optical properties due to decrease in direct band gap energy. X-ray diffraction spectra of the polymer samples showed the increased amorphous nature of the polymer.  相似文献   

12.
Positron annihilation lifetime spectroscopy (PALS) was used for calculation of number density and effective sizes of free volume holes (inter-crystallite spaces) in polycrystal CaSO4, CaCO3 (vaterit) and Ca10(PO4)6(OH)2 (apatite). The effect of substitution of two-valence Ca(II) for three-valence Eu(III) on annihilation characteristics of apatite, studied together with the data on thermo-stimulated luminescence (TSL) and low-temperature sorption of gas (N2), helped to elucidate mechanism of positronium atom (Ps) localization in the free volume holes and perform corresponding calculations. It came out that PALS is more sensitive to inter-crystallite sites (1016 cm−3) in polycrystallites than to the free volume holes in polymer glasses (1019 cm−3). This is due to higher mobility of the precursor of localized Ps in crystallites.  相似文献   

13.
For a better understanding of isotope exchange in solid Tl4Cl6 the effects of crushing the crystals were investigated by conductivity and by positron annihilation lifetime measurements. As in untreated Tl4Cl6, the conductivity variation with temperature shows a break at about 450 K. The activation energies, 0.53 eV and 0.70 eV, respectively, below and above 450 K, are very close to those in the untreated material but the absolute values of conductivity are lower after crushing which is attributed to the trapping of the mobile defects of dislocation. The positron lifetime variation with increasing temperature shows some contribution of extrinsic defects, annealing at about 413 K. On further heating or cooling cycles, the lifetime changes are controlled by the production of intrinsic cation vacancies, whose formation enthalpy, 0.39 eV, is close to that derived for untreated Tl4Cl6. The shape of the initial part of the curves would indicate that crushing does not directly create appreciable concentrations of cation vacancies but would rather produce annealable defects, possibly dislocations, favouring the formation and/or trapping of such vacancies.  相似文献   

14.
The correlation between microstructure and dielectric properties of cyanate ester (CE)/hollow silicate tube (HST) hybrids was investigated by positron annihilation lifetime spectroscopy, coincidence Doppler‐broadening spectroscopy, Fourier transform infrared spectra, and dynamic mechanical analyses. The addition of HST to CE resin brings a multi‐aspect influence (cross‐linked structure and density, free volume, and interfacial action) on the structure of the cross‐linked network and thus results in significantly varied dielectric properties. There is an optimum content of HST in hybrids to get the lowest dielectric constant and loss. When the content of HST is smaller than the percolation threshold, the hybrid has decreased dielectric constant and loss; this mainly results in the reduced size of free volume and orthopositronium intensity (I3), although when the content of HST is larger than the threshold, the increased I3 and the size of free volume as well as the interfacial polarization are responsible for the significantly enlarged dielectric constant and loss. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Free‐volume properties, size and distribution, in amorphous polystyrene exposed to CO2 gases have been measured as a function of pressure to 800 psi (5.5 MPa), of time, and of temperature using positron annihilation lifetime spectroscopy. The free volume increases significantly and its distribution broadens as a function of pressure. The free volume relaxes as a function of time with a characteristic time of 15 h, and 5.7 h for 400, and 800 psi, respectively, after depressurizing under vacuum. A portion of free volume created by CO2 exposure remains permanently in the polymer after CO2 exposure. The glass transition temperature decreases significantly as a function of CO2 pressure from the free‐volume data and is compared with the differential scanning calorimeter results. The observed free‐volume variations as a function of pressure, time, and temperature are discussed in terms of hole expansion, creation, free‐volume relaxation, plasticization, and hole filling in amorphous polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 388–405, 2008  相似文献   

16.
High-Vinyl Polybutadiene (HVBD)/cis-Polyisoprene (CPI) blends were characterized by Differential Scanning Calorimetry (DSC) and Positron Annihilation Lifetime Spectroscopy (PALS). A single DSC glass transition temperature Tg is observed, whose composition dependence strongly deviates from additivity, and shows an apparent cusp when the weight fraction of HVBD ≈ 0.75. The free-volume hole size, Vh, and the scaled fractional free volume, hps/C, = I3Vh were determined by PALS from the orthopositronium (o-Ps) intensities, I3, and lifetimes, τ3, over a temperature range encompassing Tg and the temperature at which “positronium bubble” formation occurs. In the glass, Vh and hps/C are smaller for CPI than for HVBD, but the thermal expansion coefficient for hole volume, αf, is larger in the melt for CPI than for HVBD; thus, an iso-hole volume temperature occurs in these blends at Tiso ≈ −34°C. Above and below Tiso, Vh and hps/C each show a negative departure from additivity. A quantitative interpretation of the cusp in the composition dependence of Tg can be obtained, via a modified analysis of Kovacs, using free-volume quantities from PALS, with the ratio of scaling constants CCPI/CHVBD as an adjustable parameter. At high temperatures, the positron bubble size is smaller in CPI than in HVBD. This agrees with the observation that the thermal expansivity of hole volume, and, hence the internal pressure are larger in the equilibrium melt of CPI. The effect of e+-irradiation on the o-Ps intensity was investigated. I3 decreases more rapidly in the melt as TTg, and then more slowly in the glass, suggesting that the effect is due to trapping of radical or ionic species which inhibit o-Ps formation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 861–871, 1998  相似文献   

17.
The phenol-formaldehyde-carbon nanotube composites were characterized for their free volume properties and interfacial interactions between nanotubes and the polymer matrix. The base polymeric material was a novolac type phenol-formaldehyde (PF) condensation resin cross-linked with para-toluene sulfonic acid. Multi-wall carbon nanotubes (MWCNTs) were synthesized using a catalytical chemical vapor deposition method and characterized using high-resolution transmission electron microscopy. The PF resin-carbon nanotubes composites having 2, 5, 10 and 20% (w/w%) MWCNTs were prepared. The crystallinity and morphology of the samples were characterized using X-ray diffraction and scanning electron microscopy. The free volume size in the polymer nanocomposites was observed to increase with the increase in nanotube content. Positron age momentum correlation (AMOC) studies revealed the electronic environment around different positron annihilation sites. The studies showed that ortho-positronium principally annihilates from interfacial regions of polymer and nanotubes in the nanocomposite. The positron lifetime studies together with AMOC measurements indicate an increase in the free volumes at the interface of polymer and MWCNTs in the composite. The free positron intensities showed that the polymer and nanotubes are weakly interacting in this system.  相似文献   

18.
Deterioration of a polyurethane coating by Florida natural environments as a function of time up to 16 weeks was studied by positron annihilation spectroscopy. Doppler broadening energy spectroscopy (DBES) of annihilation irradiation and positron annihilation lifetime (PAL) were measured as a function of incident positron energy (0–30 keV). A significant decrease in the S‐defect parameter from DBES and the intensity of orthopositronium from PAL was observed as a function of weathering time. This is interpreted as a loss of free volume and holes as a result of the weathering process. The gloss and surface morphology in the same system were measured by glossimetry and atomic force microscopy (AFM), respectively. The gloss decreased and surface roughness increased as a function of weathering time. The AFM images showed a new feature of a spherically coagulated microstructure on the surface after weathering. Direct correlations between the decrease in gloss and the increase in roughness as well as the decrease in the S‐defect parameter from the DBES data and in the free volume from the PAL data were observed. These results were used to discuss the weathering process in terms of chemical and physical changes as a result of photodegradation in protective polymeric systems. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2290–2301, 2001  相似文献   

19.
Using the positron annihilation lifetime technique, the annihilation parameters have been measured for epoxy and high density polyethylene (HDPE) as a function of AC electric field strength and the exposure time. The lifetime spectra have been resolved into three components, the longest component (I33) is attributed to the pick-off annihilation of o-Ps in the amorphous regions. The intermediate one (I22) is due to the annihilation of free positrons, while the shorter component (I11) stems from self annihilation of p-Ps. In HDPE, the o-Ps parameters 3 andI 3 are measured as a function of electric field strengths in the range from 10 to 100 kV/cm exposed for 24 hours. A decrease inI 3 of 8% is observed from zero to 50 kV/cm followed by an increase of the same order from 50 to 100 kV/cm. By investigating the effect of the exposure time from 2 to 24 hours at 16 and 50 kV/cm, the effect is confirmed and is attributed to the inhibition of o-Ps formation at lower field strength. In epoxy, the effect or exposure time onI 3 at 166 and 133 kV/cm shows a similar behavior as in HDPE. At 133 kV/cmI 3 decreases by only 2.5%. On the other hand, the changes in 3 occur at short exposure times. Again at large times the saturation is obtained. These effects are attributed to the expansion of free volume (increase of 3) competing at longer exposure times with other phenomena, such as liberation of free radicals, which reduce the o-Ps intensityI 3 through the conversion to p-Ps. The reactions between o-Ps and free radicals might also lead to free positrons, which could explain the increase ofI 2 and the decrease of 3 at longer exposure times.  相似文献   

20.
Positron lifetime measurements were carried out in a series of poly(ethylene oxide)—PEO—of different average molecular weights (M w): 1000, 1500, 6000, 10,000, 300,000, and 4 M. The mean radius (R ) and the mean free volume size (Vf) values were determined using a semiempirical equation that correlates the ortho‐positronium (o‐Ps) lifetime (τ3) and size of holes existing in the amorphous phases. The hole mean radius values determined at room temperature from lifetime spectra were found to be between 2.68 and 2.97 Å, and the hole volumes between 80 and 110 Å3. Free volume size evolution was studied with temperature variation until the melting temperature of the PEO samples. The degree of crystallinity and the melting temperatures were determined by Differential Scanning Calorimetry. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 219–226, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号