首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
J coupling in NMR spectroscopy is conventionally associated with covalent bonds. A noncovalent contribution often called through-space coupling (TSC) has been observed for heavy atoms. In this study, the TSC was detected and analyzed for the more common (1)H-(1)H coupling as well. In synthesized model molecules the hydrogen positions could be well controlled. For several coupling constants the through-space mechanism was even found to be the predominant factor. The nature and magnitude of the phenomenon were also analyzed by density functional computations. Calculated carbon- and hydrogen-coupling maps and perturbed electronic densities suggest that the aromatic system strongly participates in the noncovalent contribution. Unlike covalent coupling, which is usually governed by the Fermi contact, TSC is dominated by the diamagnetic term comprising interactions of nuclei with the electron orbital angular momentum. The computations further revealed a strong distance and conformational dependence of TSC. This suggests that the through-space coupling can be explored in molecular structural studies in the same way as the covalent one.  相似文献   

3.
The sign of the exchange interaction in dinuclear Cr(III)Ni(II) complexes was analyzed using theoretical methods based on density functional theory. This approach allowed us to reproduce the experimental J values correctly. In addition, the Kahn-Briat model, which uses the square of the sum of the overlaps between the magnetic orbitals to correlate with the exchange coupling constant, provided a reasonable correlation between the different types of Cr(III)Ni(II) complexes when using biorthogonalized orbitals. We also examined the exchange interactions in two polynuclear Cr(III)Ni(II) complexes: a Cr(7)Ni ring and an S-shaped Cr(12)Ni(3) complex. We concluded that both systems exhibit antiferromagentic interactions, and that the Cr(III)···Ni(II) interactions are similar in value to the C(III)···Cr(III) exchange couplings.  相似文献   

4.
The magnetic properties of a series of three neutral radical organometallic complexes of general formula [CpNi(dithiolene)]. have been investigated by a combination of X-ray crystal structure analysis and magnetic susceptibility measurements, while the assignment of the exchange coupling constants to the possible exchange pathways has been accomplished with the help of calculations based on density functional theory (DFT). The syntheses and X-ray structures of [CpNi(adt)] (adt=acrylonitrile-2,3-dithiolate) and [CpNi(tfd)] (tfd=1,2-bis(trifluoromethyl)ethene-1,2-dithiolate) complexes are described, while [CpNi(mnt)] (mnt=maleonitriledithiolate) was reported earlier. In the three complexes, we observed strong antiferromagnetic coupling that could not be explained solely by short SS intermolecular contacts. Our calculations indicated that spin density in these complexes is strongly delocalized on the NiS2 moiety, with up to 20% on the Cp ring. As a consequence, CpCp and Cpdithiolene overlap interactions have been identified as responsible for antiferromagnetic couplings. The [CpNi(adt)] complex thus has a value J=-369.5 cm(-1) for an exchange interaction through a pi stacking due to the CpCp overlap.  相似文献   

5.
The mechanism of magnetic interactions in the bulk ferromagnet para-(methylthio)phenyl nitronyl nitroxide crystal (YUJNEW) has been theoretically reinvestigated, using only data from ab initio calculations and avoiding any a priori assumptions. We first calculate the microscopic magnetic interactions (JAB exchange couplings) between all unique radical pairs in the crystal, and then generate the macroscopic magnetic properties from the energy levels of the corresponding Heisenberg Hamiltonian. We thus propose a first principles, bottom-up (i.e. micro-to-macro) approach that brings theory and experiment together. We have applied this strategy to study the magnetism of YUJNEW using data from the previously reported 298 and 114 K crystal structures, and also data from a 10 K neutron diffraction structure fully reported in this work. The magnetic topology at 298 K is two-dimensional: noninteracting planes, with three different in-plane JAB pair interactions (+0.24, +0.09, and -0.11 cm(-1)) and one numerically negligible (+0.02 cm(-1)) inter-plane JAB interaction. In contrast, the magnetic topology at 114 and 10 K is three-dimensional, with two non-negligible in-plane JAB constants (+0.11 and +0.07 cm(-1) at 114 K; +0.22 and +0.07 cm(-1) at 10 K) and one inter-plane pair interaction (+0.07 cm(-1) at 114 K; +0.08 cm(-1) at 10 K). Although this three-dimensional magnetic topology is consistent with YUJNEW being a bulk ferromagnet, there is only a qualitative agreement between computed and experimental magnetic susceptibility chiT(T) data at 114 K. However, the experimental chiT(T) curve is quantitatively reproduced at 10 K. The heat capacity curve presents a peak at around 0.12 K, close to the estimated experimental peak (0.20 K).  相似文献   

6.
Two new linear pentanickel complexes [Ni5(bna)4(Cl)2][PF6]2 (1) and [Ni5(bna)4(Cl)2][PF6]4 (2; bna=binaphthyridylamide), were synthesized and structurally characterized. A derivative of 1, [Ni5(bna)4(NCS)2][NCS]2 (3), was also isolated for the purpose of the conductance experiments carried out in comparison with [Ni5(tpda)4(NCS)2] (4; tpda=tripyridyldiamide). The metal framework of complex 2 is a standard [Ni5]10+ core, isoelectronic with that of [Ni5(tpda)4Cl2] (5). Also as in 5, complex 2 has an antiferromagnetic ground state (J=-15.86 cm(-1)) resulting from a coupling between the terminal nickel atoms, both in high-spin sate (S=1). Complex 1 displays the first characterized linear nickel framework in which the usual sequence of NiII atoms has been reduced by two electrons. Each dinickel unit attached to the naphthyridyl moieties is assumed to undergo a one-electron reduction, whereas the central nickel formally remains NiII. DFT calculations suggest that the metal framework of the mixed-valence complex 1 should be described as intermediate between a localized picture corresponding to NiII-NiI-NiII-NiI-NiII and a fully delocalized model represented as (Ni2)3+-NiII-(Ni2)3+. Assuming the latter model, the ground state of 1 results from an antiferromagnetic coupling (J=-34.03 cm(-1)) between the two (Ni2)3+ fragments, considered each as a single magnetic centre (S=3/2). An intervalence charge-transfer band is observed in the NIR spectrum of 1 at 1186 nm, suggesting, in accordance with DFT calculations, that 1 should be assigned to Robin-Day class II of mixed-valent complexes. Scanning tunnelling microscopy (STM) methodology was used to assess the conductance of single molecules of 3 and 4. Compound 3 was found approximately 40% more conductive than 4, a result that could be assigned to the electron mobility induced by mixed-valency in the naphthyridyl fragments.  相似文献   

7.
Reaction of C70 with ten equivalents of silver(I) trifluoroacetate at 320-340 degrees C followed by fractional sublimation at 420-540 degrees C and HPLC processing led to the isolation of a single abundant isomer of C70(CF3)n for n = 2, 4, 6, and 10, and two abundant isomers of C70(CF3)8. These six compounds were characterized by using matrix-assisted laser desorption ionization (MALDI) mass spectrometry, 2D-COSY and/or 1D 19F NMR spectroscopy, and quantum-chemical calculations at the density functional theory (DFT) level. Some were also characterized by Raman spectroscopy. The addition patterns for the isolated compounds were unambiguously found to be C1-7,24-C70(CF3)2, C1-7,24,44,47-C70(CF3)4, C2-1,4,11,19,31,41-C70(CF3)6, Cs-1,4,11,19,31,41,51,64-C70(CF3)8, C2-1,4,11,19,31,41,51,60-C70(CF3)8, and C1-1,4,10,19,25,41,49,60,66,69-C70(CF3)10 (IUPAC numbering). Except for the last compound, which is identical to the recently reported, crystallographically characterized C70(CF3)10 derivative prepared by a different synthetic route, these compounds have not previously been shown to have the indicated addition patterns. The largest relative yield under an optimized set of reaction conditions was for the Cs isomer of C70(CF3)8 (ca. 30 mol % of the sublimed mixture of products based on HPLC integration). The results demonstrate that thermally stable C70(CF3)n isomers tend to have their CF3 groups arranged on isolated para-C6(CF3)2 hexagons and/or on a ribbon of edge-sharing meta- and/or para-C6(CF3)2 hexagons. For Cs- and C2-C70(CF3)8 and for C2-C70(CF3)6, the ribbons straddle the C70 equatorial belt; for C1-C70(CF3)4, the para-meta-para ribbon includes three polar hexagons; for C1-7,24-C70(CF3)2, the para-C6(CF3)2 hexagon includes one of the carbon atoms on a C70 polar pentagon. The 10.3-16.2 Hz 7JF,F NMR coupling constants for the end-of-ribbon CF3 groups, which are always para to their nearest-neighbor CF3 group, are consistent with through-space Fermi-contact interactions between the fluorine atoms of proximate, rapidly rotating CF3 groups.  相似文献   

8.
Cerium intermetallic compounds exhibit anomalous physical properties such as heavy fermion and Kondo behaviors. Here, an ab initio study of the electronic structure, magnetic properties, and mixed valence character of Ce2Ni3Si5 using density functional theory (DFT) is presented. Two theoretical methods, including pure Perdew–Burke–Ernzerhof (PBE) and PBE + U , are used. In this study, Ce3+ and Ce4+ are considered as two different constituents in the unit cell. The formation energy calculations on the DFT level propose that Ce is in a stable mixed valence of 3.379 at 0 K. The calculated electronic structure shows that Ce2Ni3Si5 is a metallic compound with a contribution at the Fermi level from Ce 4f and Ni 3d states. With the inclusion of the effective Hubbard parameter (U eff), the five valence electrons of 5 Ce3+ ions are distributed only on Ce3+ 4f orbitals. Therefore, the occupied Ce3+ 4f band is located in the valence band (VB) while Ce4+ 4f orbitals are empty and Located at the Fermi level. The calculated magnetic moment in Ce2Ni3Si5 is only due to cerium (Ce3+) in good agreement with the experimental results. The U eff value of 5.4 eV provides a reasonable magnetic moment of 0.981 for the unpaired electron per Ce3+ ion. These results may serve as a guide for studying present mixed valence cerium‐based compounds. © 2017 Wiley Periodicals, Inc.  相似文献   

9.
The reaction of P(CH2OH)3 with methyl anthranilate NH2C6H4-2-CO2Me produced the ligand precursor P(CH2NHC6H4-2-CO2Me)3 (1). The reaction of 1 with [Y{N(SiMe3)2}3] produced hexadentate yttrium complex [Y{P(CH2NC6H4-2-CO2Me)3}] (2), in which the metal centre is coordinated by three amido donors and the three carbonyl oxygen atoms of the ester groups. The 31P{1H} NMR spectrum features 1J Y,P=15 Hz, and DFT calculations demonstrate that through-space interaction between the minor lobe of the phosphine lone pair and the yttrium centre allows a large Fermi contact contribution to this spin coupling constant. The EPR spectrum of the analogous paramagnetic Gd complex [Gd{P(CH2NC6H4-2-CO2Me)3}] (3) can be modelled by using a B20 crystal field parameter of +/-0.19 cm(-1). Heterodinuclear complexes were prepared by the reactions of 1 and 3 with [5,10,15,20-tetrakis(4-methoxyphenyl)porphinato]cobalt(II), by binding of the phosphine lone pair to the d(7) cobalt centre. The solid-state EPR spectrum of the heterodinuclear yttrium complex 4 exhibits large superhyperfine coupling to the phosphorus nucleus, indicative of an S=1/2 complex in which the unpaired electron resides in the cobalt dz2 orbital directed at the phosphine donor. The magnetic susceptibility of the heterodinuclear Gd-Co complex 5 demonstrates that through-space antiferromagnetic coupling occurs between unpaired electrons on the gadolinium and cobalt centres.  相似文献   

10.
Ground- and excited-state magnetic properties of recently characterized pi-conjugated photomagnetic organic molecules are analyzed by the means of density functional theory (DFT). The systems under investigation are made up of an anthracene (An) unit primarily acting as a photosensitizer (P), one or two iminonitroxyl (IN) or oxoverdazyl (OV) stable organic radical(s) as the dangling spin carrier(s) (SC), and intervening phenylene connector(s) (B). The magnetic behavior of these multicomponent systems, represented here by the Heisenberg-Dirac magnetic exchange coupling (J), as well as the EPR observables (g tensors and isotropic A values), are accurately modeled and rationalized by using our DFT approach. As the capability to quantitatively assess intramolecular exchange coupling J in the excited state makes it possible to undertake rational optimization of photomagnetic systems, DFT was subsequently used to model new compounds exhibiting different connection schemes for their functional components (P, B, SC). We show in the present work that it is worthwhile considering the triplet state of anthracene, that is, P when promoted in its lowest photoexcited state, as a full magnetic site in the same capacity as the remote SCs. This framework allows us to accurately account for the interplay between transient ((3)An) and persistent (IN, OV) spin carriers, which magnetically couple according to a sole polarization mechanism essentially supported by phenyl connector(s). From our theoretical investigations of photoinduced spin alignment, some general rules are proposed and validated. Relying on the analysis of spin-density maps, they allow us to predict the magnetic behavior of purely organic magnets in both the ground and the excited states. Finally, the notion of photomagnetic molecular devices (PMMDs) is derived and potential application towards molecular spintronics disclosed.  相似文献   

11.
12.
During nitroxide-mediated polymerization (NMP) in the presence of a nitroxide R2(R1)NO*, the reversible formation of N-alkoxyamines [P-ON(R1)R2] reduces significantly the concentration of polymer radicals (P*) and their involvement in termination reactions. The control of the livingness and polydispersity of the resulting polymer depends strongly on the magnitude of the bond dissociation energy (BDE) of the C-ON(R1)R2 bond. In this study, theoretical BDEs of a large series of model N-alkoxyamines are calculated with the PM3 method. In order to provide a predictive tool, correlations between the calculated BDEs and the cleavage temperature (Tc), and the dissociation rate constant (k(d)), of the N-alkoxyamines are established. The homolytic cleavage of the N-OC bond is also investigated at the B3P86/6-311++G(d,p)//B3LYP/6-31G(d), level. Furthermore, a natural bond orbital analysis is carried out for some N-alkoxyamines with a O-C-ON(R1)R2 fragment, and the strengthening of their C-ON(R1)R2 bond is interpreted in terms of stabilizing anomeric interactions.  相似文献   

13.
Magnetic interactions in solid‐state tantalum cluster compounds have been evidenced by using magnetic susceptibility measurements and corroborated by broken‐symmetry DFT calculations. The three selected compounds are based on [Ta6X12(H2O)6]3+ (X=Cl or/and Br) units with edge‐bridged Ta6 octahedral clusters. Although two of them crystallise in the tetragonal space group I41/a, all compounds exhibit a similar arrangement of paramagnetic clusters related to the diamond structural framework (Fd$\bar 3Magnetic interactions in solid-state tantalum cluster compounds have been evidenced by using magnetic susceptibility measurements and corroborated by broken-symmetry DFT calculations. The three selected compounds are based on [Ta(6)X(12)(H(2)O)(6)](3+) (X=Cl or/and Br) units with edge-bridged Ta(6) octahedral clusters. Although two of them crystallise in the tetragonal space group I4(1)/a, all compounds exhibit a similar arrangement of paramagnetic clusters related to the diamond structural framework (Fd ?3m space group). Magnetic parameters were fitted by using the [5,4] Padé approximant of high-temperature series expansion of susceptibility for the Heisenberg model (S=1/2) in the diamond framework, assuming only nearest-neighbouring interactions. Such a model appropriately describes magnetic-susceptibility measurements at temperatures T>0.7|J|/k. The magnetic interaction parameter J between two [Ta(6)Cl(12)(H(2)O)(6)](3+) clusters is estimated to be -64.28(7) cm(-1) ; it has been enhanced by replacing several chlorine inner ligands with bromine ones (J=-123(3) cm(-1) for two [Ta(6)Br(7.7(1))Cl(4.3(1))(H(2)O)(6)](3+) clusters) and is strongest between two bromine [Ta(6)Br(12)(H(2)O)(6)](3+) clusters with a value of -155(1) cm(-1) . Broken-symmetry DFT calculations within spin-dimer analysis confirmed this trend. Those interactions can be explained on the basis of the overlap between singly occupied a(2u) orbitals localised on neighbouring clusters.  相似文献   

14.
The tri‐tert‐butylphenalenyl (TBPLY) radical exists as a π dimer in the crystal form with perfect overlapping of the singly occupied molecular orbitals (SOMOs) causing strong antiferromagnetic exchange interactions. 2,5‐Di‐tert‐butyl‐6‐oxophenalenoxyl (6OPO) is a phenalenyl‐based air‐stable neutral π radical with extensive spin delocalization and is a counter analogue of phenalenyl in terms of the topological symmetry of the spin density distribution. X‐ray crystal structure analyses showed that 8‐tert‐butyl‐ and 8‐(p‐XC6H4)‐6OPOs (X=I, Br) also form π dimers in the crystalline state. The π‐dimeric structure of 8‐tert‐butyl‐6OPO is seemingly similar to that of TBPLY even though its SOMO–SOMO overlap is small compared with that of TBPLY. The 8‐(p‐XC6H4) derivatives form slipped stacking π dimers in which the SOMO–SOMO overlaps are greater than in 8‐tert‐butyl‐6OPO, but still smaller than in TBPLY. The solid‐state electronic spectra of the 6OPO derivatives show much weaker intradimer charge‐transfer bands, and SQUID measurements for 8‐(p‐BrC6H4)‐6OPO show a weak antiferromagnetic exchange interaction in the π dimer. These results demonstrate that the control of the spin distribution patterns of the phenalenyl skeleton switches the mode of exchange interaction within the phenalenyl‐based π dimer. The formation of the relevant multicenter–two‐electron bonds is discussed.  相似文献   

15.
The present work completes and extends our previous reports on the determination of the magnetic ground state and on the strength of the through bond exchange coupling within series of biradicals. This knowledge was subsequently exploited for the analysis of the magnetic interactions in their crystals. We report here the studies of series of triradicals incorporating alpha-nitronyl nitroxides (NN) or alpha-imino nitroxides (IN) as terminal radical fragments connected through a m-phenylene coupling unit in one case and a phenyl acetylene unit in other case. Tetraradical derivatives have also been studied. The studies of isolated molecules (EPR in solution and DFT calculations) allow the assessment of the magnetic interactions through the magnetic coupling unit. All triradical derivatives are found to exhibit a quartet ground state, whereas a singlet ground state is determined for the tetraradical. This last result reinforces previous findings that the singlet ground state is favoured in related biradicals involving similar m-phenylene couplers. Moreover, the through bond magnetic exchange coupling for the ortho-meta connectivity could be demonstrated as being ferromagnetic, thus ascertaining our previous hypotheses. The magnetic properties of the triradicals and tetraradicals in their solid state have been rationalized by using a previously proposed methodology, allowing to identify the most relevant magnetic pathways.  相似文献   

16.
17.
A structure that can self‐heal under standard conditions is a challenge faced nowadays and is one of the most promising areas in smart materials science. This can be achieved by dynamic bonds, of which diarylbibenzofuranone (DABBF) dynamic covalent bond is an appealing solution. In this report, we studied the DABBF bond formation against arylbenzofuranone (ABF) and O2 reaction (autoxidation). Our results show that the barrierless DABBF bond formation is preferred over autoxidation due to the charge transfer process that results in the weakly bonded superoxide. We calculated the electronic and structural properties using total energy density functional theory. © 2017 Wiley Periodicals, Inc.  相似文献   

18.
To verify whether attractive metallophilic interactions exist in the dimer-of-dimers [Cu(2)(ophen)(2)](2) (Hophen=1H-[1,10]phenanthrolin-2-one) (1), we designed and synthesized a series of such [M(2)L(2)](2) structures by varying the d(10) metal and/or the ligand (M=Cu(I) or Ag(I), L=ophen or obpy; Hobpy=1H-[2,2']bipyridinyl-6-one), and have successfully obtained three dimers-of-dimers: [Ag(2)(ophen)(2)](2).6 H(2)O (2), [Cu(2)(obpy)(2)](2) (3), and [Ag(2)(obpy)(2)](2).4.5 H(2)O.0.5 DMF (4). X-ray analyses of these structures show that interdimer M-M separations in [Ag(2)-(ophen)(2)](2) (3.199 A) are remarkably shorter than those in [Cu(2)(ophen)(2)](2) (3.595 A). Shorter interdimer M-M separations are found in the structures of [M(2)(obpy)(2)](2) (2.986 and 2.993 A in [Cu(2)(obpy)(2)](2), 3.037 to 3.093 A in [Ag(2)(obpy)(2)](2)), in which the pi systems are smaller than in the complexes with the ophen ligand. Detailed structural comparison of these dimers-of-dimers indicates that the interdimer, face-to-face pi-pi interactions repulse rather than support the interdimer metal-metal attractive interactions. This study also yields qualitative comparison of the strengths between argentophilic, cuprophilic, and face-to-face pi-pi interactions. DFT calculations on the four dimers-of-dimers further support the above deduction. The structure of a trimer-of-dimers [Ag(2)(obpy)(2)](3) (Ag-Ag 3.171 to 3.274 A) is further evidence that the oligomerization of the [M(2)L(2)] molecules is favored by stronger metallophilic and weaker face-to-face pi-pi interactions.  相似文献   

19.
The TTTA ? Cu(hfac)2 polymer ( 1 ; in which TTTA=1,3,5‐trithia‐2,4,6‐triazapentalenyl, and hfac=(1,1,1,5,5,5)‐hexafluoroacetylacetonate) is one of the most prominent examples of the rational use of the ‘metal–radical’ synthetic approach to achieve ferromagnetic interactions. Experimentally, the magnetic topology of 1 could not be fully deciphered. Herein, the first‐principles bottom‐up procedure was applied to elucidate the nature and strength of the magnetic JAB exchange interactions present in 1 . The computed JAB values give rise to a 2D magnetic topology of ferromagnetic dimers (+11.9 cm?1) coupled through weaker antiferromagnetic interactions (?3.0 and ?3.2 cm?1) in two different spatial directions. The hitherto unknown origin of the antiferromagnetic interdimer interactions is thus unveiled. By using the 2D magnetic topology, the agreement between calculated and experimental χT(T) data is extraordinary. In the metal–radical TTTA ? Cu(hfac)2 compound, the computational model transcends the local dimer cluster model owing to strong interactions between metal centers and organic radicals, thereby creating a de facto biradical. In addition, it is shown that the magnetic topology cannot be inferred from the polymeric [TTTA ??? Cu(hfac)2]n crystal motif, that is, from its chemical coordination pattern. Instead, one should think in terms of magnetic building blocks, namely, the de facto biradicals.  相似文献   

20.
He(I) photoelectron spectroscopy was used to examine the valence‐shell electronic structure of three new and seven previously known bicyclo[1.1.1]pentane derivatives, 1,3‐Y2‐C5X6 (for X=H, Y=H, Cl, Br, I, CN; for X=F, Y=H, Br, I, CN). A larger series (X=H or F, Y=H, F, Cl, Br, I, At, CN) has been studied computationally with the SAC‐CI (symmetry‐adapted cluster configuration interaction) method. The outer‐valence ionization spectra calculated by the SAC‐CI method, including spin–orbit interaction, reproduced the experimental photoelectron spectra well, and quantitative assignments are given. When the extent of effective through‐cage interaction between the bridgehead halogen lone‐pair orbitals was defined in the usual way by orbital‐energy splitting, it was found to be larger than that mediated by other cages such as cubane, and was further enhanced by hexafluorination. The origin of the orbital‐energy splitting is analyzed in terms of cage structure, and it is pointed out that its relation to the degree of interaction between the bridgehead substituents is not as simple as is often assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号