共查询到20条相似文献,搜索用时 15 毫秒
1.
N. A. Jones E. D. T. Atkins M. J. Hill 《Journal of Polymer Science.Polymer Physics》2000,38(9):1209-1221
Chain‐folded lamellar crystals of the ten even‐even nylons: 6 6, 8 6, 8 8, 10 6, 10 8, 10 10, 12 6, 12 8, 12 10, and 12 12 have been grown from solution and their morphologies and structures studied using transmission electron microscopy, both imaging and diffraction. Sedimented mats were examined using X‐ray diffraction. The solution‐grown crystals are lath‐shaped lamellae and diffraction from these crystals, at room temperature, reveals that three crystalline forms are present in differing ratios. The crystals are composed of chain‐folded, hydrogen‐bonded sheets, the linear hydrogen bonds within which generate a progressive shear of the chains (p‐sheets). The sheets are found to stack in two different ways. Some p‐sheets stack with a progressive shear, to form the “αp structure”; others sheets stack with an alternate stagger, to form the “βp structure”. Both the αp and βp structures give two strong diffraction signals at spacings of 0.44 nm and 0.37 nm; these signals represent a projected intrasheet interchain distance (actual value 0.48 nm) and the intersheet spacing, respectively. Preparations of nylons 6 6, 8 6, 8 8, 12 6, and 12 8 consisted almost entirely of αp‐structure material, with only a trace of βp‐structure material being present. In contrast, nylons 10 6, 10 8, 10 10, 12 10, and 12 12 contained substantial quantities of both αp‐ and βp‐structure material, with αp‐structure material always being in the majority. Preparations of nylons 10 8, 12 10, and 12 12 also showed an additional diffraction signal at 0.42 nm; this signal is characteristic of the pseudohexagonal (high temperature) structure. The melting temperature of solution‐grown lamellae of these even‐even nylons decreases with decreasing linear amide density. On heating, the strong diffraction signals (0.44 nm and 0.37 nm) gradually moved together and merge at the Brill temperature to form a single diffraction signal (0.42 nm), characteristic of the pseudohexagonal structure. This single diffraction signal remained until melting. For nylons 6 6, 8 6, 8 8, 10 6, and 12 6, the Brill temperatures were substantially below the respective melting temperatures and the single 0.42 nm diffraction signal was stable over temperature ranges of 14 °C to 56 °C, depending on the nylon. Conversely, nylons 10 8, 10 10, 12 8, 12 10, and 12 12 had coincident melting and extrapolated Brill temperatures. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1209–1221, 2000 相似文献
2.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option. 相似文献
3.
A ternary lanthanum bromide La 8Br 7Ni 4 was synthesized from La, LaBr 3, and Ni under an Ar atmosphere at 830 degrees C. It crystallizes in space group C2/ m (No. 12) with lattice constants a = 29.528(4) A, b = 4.0249(6), c = 8.708(1) A, and beta = 94.515(2) degrees . The structure features condensed Ni-centered La 6 trigonal prisms. The Ni atoms are bonded to each other to form ribbons of Ni hexagons. Band structure, bonding, and physical properties of the compound have been investigated. 相似文献
4.
Koutmos M Kalyvas H Sanakis Y Simopoulos A Coucouvanis D 《Journal of the American Chemical Society》2005,127(11):3706-3707
The systematic synthesis of heterometallic Ni/Fe/S and Cu/Fe/S clusters with a M8S6 core structure that resembles that of pentlandite minerals is described. The chemical properties and electronic structures of the new clusters have been investigated and are reported in this communication. 相似文献
5.
6.
Transformation of [W6X8]X4 + 3 X2 = [W6X12]X6 (X = Cl, Br) The transformation of [W6X8]X4 + 3 X2 = [W6X12]X6 (X = Cl, Br) has been investigated by changing the relation Cl2/Br2 and the temperature. In this way the compounds [W6Br12?nCln]Cl6?mBrm are isolated. All of the products are isotypic with W6Cl18 and W6Br18. Most often n equals 6, however compounds with other relations of Cl/Br are also observed (e. g. n = 4.8) The 6 ligands standing outside of the brackets are replaced by Cl or Br. The substitution of [W6Br6Cl6]Cl6 by means of bromine leads to the cluster [W6Br12]X6. The backward transformation of the cluster compound [W6Br12]Br6 happens by decomposition on the thermobalance, e. g. according to Gl. (1) (See Inhaltsübersicht). By analogy [W6Br12]Cl6 is decomposed to [W6Br8]Cl2Br2, which by treatment with conc. HCl is transformed into [W6Br8]Cl4 · 2 H2O. 相似文献
7.
Chong Zheng Hansjürgen Mattausch Constantin Hoch Arndt Simon 《Journal of solid state chemistry》2009,182(8):2307-2311
The title compound was synthesized from La, LaCl3 and Co under Ar atmosphere at 800 °C. It crystallizes in space group P42/n (no. 86) with lattice constants a=11.308(2) Å and c=14.441(3) Å. The structure features an isolated Co-centered La6 octahedron with all corners and edges, and 2 of its 8 triangular faces coordinated by Cl atoms. The La6Co octahedron is significantly distorted, and the La coordination by Cl atoms deviates from the common close-packing arrangements found in other reduced rare earth metal halides. Structure, bonding and physical properties of the compound have been investigated. 相似文献
8.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option. 相似文献
9.
Vibrational Spectra of the Cluster Compounds (M6X12i) · 8H2O, M = Nb, Ta; Xi = Cl, Br; Xa = Cl, Br, I IR and, for the first time, Raman spectra at 80 K of the cluster compounds (M6X)X · 8H2O; M = Nb, Ta; Xi = Cl, Br; Xa = Cl, Br, I, have been recorded, characterized by typical frequencies of the (M6X) unit, which are only slightly influenced by the terminal Xa ligands. The most intense line with the depolarisation ≈? 0.2 in all Raman spectra is caused by inphase movement of all atoms and assigned to the symmetric metal-metal vibration v1, observed for the clusters (Nb6Cl) at 233–234, for (Nb6Br) at 186–187, for (Ta6Cl) at 199–203, and for (Ta6Br) at 176–179 cm?1. The IR spectra exhibit in the same series intense bands at 233, 204, 207, and 179 cm?1, assigned to the antisymmetric metal-metal vibration. The metal-metal frequencies are significantly higher than discussed before. The tantalum clusters show on excitation with the krypton line 647.1 nm in the region of a d–d transition at 645 nm a resonance Raman effect with series of overtones and combination bands. In case of (Ta6Br) another polarisized band is observed at 229 cm?1 and assigned to the Ta? Bri vibration v2. From the progressions of v1 and v2 anharmonicity constants of about ?3 cm?1 are calculated indicating a strong distortion of the potential curves. 相似文献
10.
Bennett MV Stoian S Bominaar EL Münck E Holm RH 《Journal of the American Chemical Society》2005,127(35):12378-12386
Current theoretical and experimental evidence points toward X = N as the identity of the interstitial atom in the [MoFe7S9X] core of the iron-molybdenum cofactor cluster of nitrogenase. This atom functions with mu6 bridging multiplicity to six iron atoms and, if it is nitrogen as nitride, raises a question as to the existence of a family of molecular iron nitrides of higher nuclearity than known dinuclear Fe(III,IV) species with linear [Fe-N-Fe]5+,4+ bridges. This matter has been initially examined by variation of reactant stoichiometry in the self-assembly systems [FeX4]1-/(Me3Sn)3N (X = Cl-, Br-) in acetonitrile. A 2:1 mol ratio affords [Fe4N2Cl10]4- (1), isolated as the Et4N+ salt (72%). This cluster has idealized C2h symmetry with a planar antiferromagnetically coupled [Fe(III)4(mu3-N)2]6+ core containing an Fe2N2 rhombus to which are attached two FeCl3 units. DFT calculations have been performed to determine the dominant magnetic exchange pathway. An 11:8 mol ratio leads to [Fe10N8Cl12]5- (3) as the Et4N+ salt (37%). The cluster possesses idealized D2h symmetry and is built of 15 edge- and vertex-shared rhomboids involving two mu3-N and six mu4-N bridging atoms, and incorporates two of the core units of 1. Four FeN2Cl2 and four FeN3Cl sites are tetrahedral and two FeN5 sites are trigonal pyramidal. The cluster is mixed-valence (9Fe(III) + Fe(IV)); a discrete Fe(IV) site was not detected by crystallography or M?ssbauer spectroscopy. The corresponding clusters [Fe4N2Br10]4- and [Fe10N8Br12]5- are isostructural with 1 and 3, respectively. Future research is directed toward defining the scope of the family of molecular iron nitrides. 相似文献
11.
Cañada-Vilalta C O'Brien TA Pink M Davidson ER Christou G 《Inorganic chemistry》2003,42(24):7819-7829
Alcoholysis of preformed tetranuclear and hexanuclear iron(III) clusters has been employed for the synthesis of four higher-nuclearity clusters. Treatment of [Fe(4)O(2)(O(2)CMe)(7)(bpy)(2)](ClO(4)) with phenol affords the hexanuclear cluster [Fe(6)O(3)(O(2)CMe)(9)(OPh)(2)(bpy)(2)](ClO(4)) (1). Reaction of [Fe(6)O(2)(OH)(2)(O(2)CR)(10)(hep)(2)] (R = Bu(t) or Ph) with PhOH affords the new "ferric wheel" complexes [Fe(8)(OH)(4)(OPh)(8)(O(2)CR)(12)] [R = Bu(t) (2) or Ph (3)]. Complexes 2 and 3 exhibit the same structure, which is an unprecedented type for Fe(III). In contrast, treatment of [Fe(6)O(2)(OH)(2)(O(2)CBu(t))(10)(hep)(2)] with MeOH leads to the formation of [Fe(10)(OMe)(20)(O(2)CBu(t))(10)] (4), which exhibits the more common type of ferric wheel seen in analogous complexes with other carboxylate groups. Solid-state variable-temperature magnetic susceptibility measurements indicate spin-singlet ground states for complexes 2 and 4. The recently developed semiempirical method ZILSH was used to estimate the pairwise exchange parameters (J(AB)) and the average spin couplings S(A)[empty set].S(B)[empty set] between the Fe(III) centers, providing a clear depiction of the overall magnetic behavior of the molecules. All exchange interactions between adjacent Fe(III) atoms are antiferromagnetic. 相似文献
12.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion. 相似文献
13.
Oleneva OS Olenev AV Shestimerova TA Baranov AI Dikarev EV Shevelkov AV 《Inorganic chemistry》2005,44(26):9622-9624
The first compounds, Hg(7)Ag(2)P(8)X(6) (X = Br, I) and Hg(6)Ag(4)P(8)Br(6), featuring the partial isoelectronic substitution of Hg(2+) for Ag(1+) in mercury-pnicogen frameworks have been obtained and structurally characterized. The new compounds are the supramolecular assemblies built of the covalently bonded metal-pnicogen frameworks trapping guests of different complexity. The frameworks feature the perfect ordering of Hg(2+) and Ag(1+) cations and contain P(2)(4)(-) and P(6)(6)(-) phosphorus clusters. The substitution of Hg(2+) with Ag(1+) leads to the reduction in charge of the host cluster-containing cationic matrix and concomitant replacement of the monatomic X(-) guest by a lesser amount of the AgBr(3)(2)(-) anions. 相似文献
14.
The compounds Ce53Fe12S90X3 (X = Cl, Br, I), which represent the first examples of rare-earth transition-metal sulfide halides, were prepared using the reactive-flux method, through reaction of Ce2S3, FeS, or Fe and S in a CeX3 flux at 1320 K. Their structures were determined by single-crystal X-ray diffraction. The compounds are isostructural, crystallizing in the trigonal space group Rm with Z = 1 [Ce53Fe12S90Cl3, a = 13.9094(9) A, c = 21.604(2) A, V = 3619.7(4) A3; Ce(53)Fe(12)S(90)Br(3), a = 13.916(1) A, c = 21.824(2) A, V = 3660.0(5) A3; Ce53Fe12S90I3, a = 13.863(3) A, c = 21.944(6) A, V = 3652(2) A3]. The structure adopted is a stuffed variant of the La52Fe12S90 structure type. Fe2S9 dimers of face-sharing octahedra are linked by face- and vertex-sharing capped CeS6 trigonal prisms, forming a three-dimensional framework containing cuboctahedral cavities of two sizes. The smaller cavities accommodate alternative sites for disordered cerium atoms. The larger cavities, which remain empty in the parent structure, are filled by halogen atoms in Ce53Fe12S90X3. Alternatively, the structure can be described as a 9-fold superstructure of the Mn5Si3 structure type (P6(3)/mcm), with a = a' and c = 3c'. Temperature-dependent magnetic susceptibility measurements suggest that Ce53Fe12S90I3 may order antiferromagnetically at low temperatures. 相似文献
15.
16.
Reaction of the bis-bidentate ligand L1, having two bidentate pyrazolyl-pyridine termini, with Co(II) or Zn(II) results in formation of the complexes [M8(L1)12]X16 (X = perchlorate or tetrafluoroborate); [Zn8(L1)2](ClO4)16 has been structurally characterised and is a cube with a metal ion at each corner, a bridging ligand along each edge, and an anion in the central cavity. 相似文献
17.
Hui‐Yi Zeng Mar'yana Lukachuk Hiroki Okudera Chong Zheng Hansjürgen Mattausch Arndt Simon Prof. Dr. Dr .h.c. mult. 《无机化学与普通化学杂志》2007,633(9):1359-1365
Two new layered rare earth boride halides, La2XB3 (X = Cl, Br) have been synthesized. They crystallize in the space group (No. 174) with a = 7.872(1) Å, c = 8.219(2) Å, V = 441.1(1) Å3 for the chloride, and with a = 7.834(1) Å, c = 8.440(1) Å, V = 448.6(1) Å3 for the bromide compound, respectively. The crystals of La2ClB3 are twinned resulting in an apparent symmetry P6/mmm (No. 191). In the crystal structure of La2XB3, trigonal La6 prisms are condensed into sheets in the a‐b plane, and the halogen atoms X sandwich the La double layers. The connection of B atoms which center the prisms and rectangular prism faces leads to B nets of B3, B6 and B8 rings embedded between the La atom double layers. The chemical bonding is analyzed for the well ordered bromide, and the characteristic disorder in the chloride is discussed. 相似文献
18.
19.
Pavica Planinić Vesna Rastija Siniša Širac Marija Vojnović Leo Frkanec Nevenka Brničević Robert E. McCarley 《Journal of Cluster Science》2002,13(2):215-222
Three new series of mixed-ligand clusters of the [(M6X12)X2(RCN)4] (M=Nb, Ta; X=Cl, Br; R=Et, n-Pr, n-Bu) composition have been prepared. It is supposed that four nitrile molecules and two halogen atoms are coordinated to the terminal octahedral coordination sites of the [M6X12]2+ unit. 相似文献
20.
Liu Y Kravtsov VCh Beauchamp DA Eubank JF Eddaoudi M 《Journal of the American Chemical Society》2005,127(20):7266-7267
Single-metal-ion-based rigid molecular building blocks (MBBs) have been utilized to design and synthesize novel metal-organic assemblies. Reaction between In(NO3)3.2H2O and 2,5-pyridinedicarboxylic acid (2,5-H2PDC) has permitted the assembly of two supramolecular isomers, a Kagomé lattice and an unprecedented M6L12 discrete octahedron. 相似文献