首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this work is to optimise the proportion of the organic modifier and the pH of the mobile phase, in order to separate a series of peptide hormones with therapeutic interest in the molecular mass range from 500 to 6000. The composition of the mobile phase was optimised by establishing relationships between retention parameters and either the scale of solvent polarity, or the Kamlet–Taft multiparameter solvent scale of the eluent, using linear solvation energy relationships. Likewise, linear correlations between the chromatographic retention and Reichardt’s ENT parameter were obtained. These relationships allowed an important reduction of the experimental retention data needed for developing a given separation. In addition, a model describing the effect of the correctly measured pH of the mobile phase on retention in LC was established and tested for the series of selected peptides using an octadecylsilica column. The proposed equations permit the prediction of the optimum pH and also permit the determination of the acidity constants of the peptides in the hydro-organic mixtures using a minimum number of measurements.  相似文献   

2.
3.
A review about the influence of mobile phase acid-base equilibria on the liquid chromatography retention of protolytic analytes with acid-base properties is presented. The general equations that relate retention to mobile phase pH are derived and the different procedures to measure the pH of the mobile phase are explained. These procedures lead to different pH scales and the relationships between these scales are presented. IUPAC rules for nomenclature of the different pH are also presented. Proposed literature buffers for pH standardization in chromatographic mobile phases are reviewed too. Since relationships between analyte retention and mobile phase pH depends also on the pKa value of the analyte, the solute pKa data in water-organic solvent mixtures more commonly used as chromatographic mobile phase are also reviewed. The solvent properties that produce variation of the pKa values with solvent composition are discussed. Chromatographic examples of the results obtained with the different procedures for pH measurement are presented too. Application to the determination of aqueous pKa values from chromatographic retention data is also critically discussed.  相似文献   

4.
This paper studied the effect of different chromatographic parameters in RP-HPLC (for example,composition of mobile phase, temperature, number of carbon atoms within the solute molecules, solvent molecules and alkyl ligand on bonded phase surface) on the retention convergence based on the displacement adsorption multi-interaction model,and derived a few retention convergent equations by using thermodynamic method,which have been verified by a great deal of experimental data of homologous series.Moreover,we have developed a general method, which can calculate the coordinate values of various retention convergent points by computer directly from experimental data,and the results predicted are in good agreement with that obtained by using plotting method.  相似文献   

5.
Plots of the retention factor against mobile phase composition were used to organize a varied group of solutes into three categories according to their retention mechanism on an octadecylsiloxane-bonded silica stationary phase HyPURITY C18 with methanol-water and acetonitrile-water mobile phase compositions containing 10-70% (v/v) organic solvent. The solutes in category 1 could be fit to a general retention model, Eq. (2), and exhibited normal retention behavior for the full composition range. The solutes in category 2 exhibited normal retention behavior at high organic solvent composition with a discontinuity at low organic solvent compositions. The solutes in category 3 exhibited a pronounced step or plateau in the middle region of the retention plots with a retention mechanism similar to category 1 solutes at mobile phase compositions after the discontinuity and a different retention mechanism before the discontinuity. Selecting solutes and appropriate composition ranges from the three categories where a single retention mechanism was operative allowed modeling of the experimental retention factors using the solvation parameter model. These models were then used to predict retention factors for solutes not included in the models. The overwhelming number of residual values [log k (experimental) - log k (model predicted)] were negative and could be explained by contributions from steric repulsion, defined as the inability of the solute to insert itself fully into the stationary phase because of its bulkiness (i.e., volume and/or shape). Steric repulsion is shown to strongly depend on the mobile phase composition and was more significant for mobile phases with a low volume fraction of organic solvent in general and for mobile phases containing methanol rather than acetonitrile. For mobile phases containing less than about 20 % (v/v) organic solvent the mobile phase was unable to completely wet the stationary phase resulting in a significant change in the phase ratio and for acetonitrile (but less so methanol) changes in the solvation environment indicated by a discontinuity in the system maps.  相似文献   

6.
An extension of the treatment adopted in a recent paper [P. Nikitas, A. Pappa-Louisi, P. Agrafiotou, J. Chromatogr. A 946 (2002) 33] was used to derive expressions describing the variation of solute retention k with composition in ternary reversed phase liquid chromatography, RP-LC, solvent systems. The equation of the partition model obtained in this way for a ternary mobile phase was identical to that previously derived using the solubility parameter concept. This equation as well as two new expressions of In k versus organic modifiers content were tested in a variety of ternary solvent systems in order to examine the possibility of predicting retention behavior of solutes under ternary solvent mixture elution conditions from known retention characteristics in binary mobile phases. It was demonstrated the superiority of both new equations derived in this paper to that previously proposed and applied to date in ternary solvent mixtures.  相似文献   

7.
Plots of the retention factor against mobile phase composition were used to organize a varied group of solutes into three categories according to their retention mechanism on an octadecylsilioxane-bonded silica stationary phase, Ascentis TM C18, with acetonitrile-water and methanol-water mobile phase compositions containing 10–70% (v/v) organic solvent. The solutes in category 1 could be fit to a general retention model, Eq. (1), and exhibited normal retention behavior for the full composition range. The solutes in category 2 exhibited normal retention behavior at high organic solvent compositions with a discontinuity at low organic solvent mobile phase compositions. The solutes in category 3 exhibited a pronounced step or plateau in the middle region of the retention plots with a retention mechanism similar to category 1 at mobile phase compositions after the discontinuity and a different retention mechanism before the discontinuity. Selecting solutes and appropriate composition ranges from the three categories where a single retention mechanism was operative allowed modeling of the experimental retention factors using the solvation parameter model. These models were then used to predict retention factors for solutes excluded from the models. The overwhelming number of residual values, here defined as the difference between experimental and model predicted retention factors for the excluded solutes, could be explained by contributions from steric repulsion. The latter defined as the inability of solutes to fully insert themselves into the solvated stationary phase because of their size or conformation. Steric repulsion resulted in a systematic reduction in retention compared with predicted values for the fully inserted solute. The bonding density of the stationary phase; the type and composition of the mobile phase; and the size, conformation, type and number of functional groups on the solute are shown to affect the contribution of steric repulsion to the retention mechanism.  相似文献   

8.
It was demonstrated that the correlations between the logarithms of the retention factors for various pairs of substances being linear makes it possible to plot and analyze maps of separation of complex mixtures at various mobile phase compositions on the basis of two measurements at the boundaries of the eluent composition range. Applied to the available experimental data, the relative analysis of retention showed that the use of incremental relationships in the form of the difference between the retention parameters for the corresponding substances at a given mobile phase composition is incorrect. A substantiation of the new method was presented.  相似文献   

9.
The aim of this work was to develop a model that accurately describes retention in liquid chromatography (LC) as a function of pH and solvent composition throughout a large parameter space. The variation of retention as a function of the solvent composition, keeping other factors constants, has been extensively studied. The linear relationship established between retention factors of solutes and the polarity parameter of the mobile phase, E(N)T, has proved to predict accurately retention in LC as a function of the organic solvent content. Moreover, correlation between retention and the mobile phase pH, measured in the hydroorganic mixture, can be established allowing prediction of the chromatographic behavior as a function of the eluent pH. The combination of these relationships could be useful for modelling retention in LC as a function of solvent composition and pH. For that purpose, the retention behavior on an octadecyl silica column of a group of diuretic compounds covering a wide range of physico-chemical properties were studied using acetonitrile as organic modifier. The suggested model accurately describes retention of ionizable solutes as concomitant effects of variables included and is applicable to all solutes studied. We also aimed to establish an experimental design that allows to reproduce to a good approximation the real retention surface from a limited number of experiments, that is from a limited number of chromatograms. Ultimately, our intention is to use the model and experimental design for the simultaneous interpretive optimization of pH and proportion of organic solvent of the mobile phase to be used in the proposed separation.  相似文献   

10.
Summary The potential of on-column preconcentration in capillary electrochromatography (CEC) to improve the detection limit was investigated. Two test mixtures containing a pharmaceutically relevant steroid (Desogestrel or Tibolon) together with several structurally related compounds were used for evaluation. For both test mixtures, the mobile phase composition was optimised resulting in a baseline separation of all components and plate numbers of up to 1.2·105 plates m−1 within 15 min. An equation was derived which describes the obtainable gain in injection time as function of the analyte retention factor in the mobile phase and in the injection solvent. The proposed model accounts for the focussing of the analytes due to both the retention during injection and the step-gradient during elution. For the experimental study, the least hydrophobic component of the Desogestrel mixture was used. When the mobile phase was used as injection solvent, a considerable decrease in plate number was observed when the injection time exceeded 5 s. By dissolving the analyte in a less-eluting solvent, injection times could be increased up to 60 s without causing significant extra band broadening. Two mixtures containing a relatively high amount of Desogestrel or Tibolon, and the related components at the 0.1% level were analysed to study the potential of the system for impurity profiling. With the mobile phase as injection solvent, the low level components could hardly be detected. By applying large volume injection from a less-eluting injection solvent, a gain in sensitivity of a factor of 7–9 was achieved.  相似文献   

11.
Summary A simple rapid procedure is described for estimating optimum compositions of ternary mobile phase mixtures for the separation of samples by reversed-phase liquid chromatography (RPLC). Retention data in two iso-eluotropic binary mobile phase mixtures (mixtures with equal retention times) are required to initiate the procedure. The logarithm of the capacity factor is assumed to vary linearly with the composition of isoeluotropic ternary mixtures formed by mixing the two limiting binaries. Using the product of resolution factors of adjacent peaks as the criterion, an optimum ternary composition is then calculated. After a chromatogram has been obtained with the predicted optimum ternary mobile phase, the procedure is repeated until no further improvement can be achieved. Examples of the application of the present procedure are described to illustrate its effectiveness.  相似文献   

12.
The influence of pH and solvent composition of acetonitrile-water mobile phases on the retention of acids and bases on a polymeric stationary phase is studied. Very good relationships between retention and mobile phase pH are obtained if the pH is measured in the proper pH scale. The fit of retention to pH for a particular solvent composition provides the pKa values of the equilibria between the different acid-base species and the retention parameters of these species at this solvent composition. Several models are tested that relate these parameters to solvent composition and properties in order to propose a general model to predict retention for any mobile phase pH and composition.  相似文献   

13.
    
Zusammenfassung Es wird ein einfaches Verfahren zur systematischen Optimierung komplex zusammengesetzter mobiler Phasen in der Hochleistungs-Flussigkeits-Chromatographie (HPLC) beschrieben. Fur jede interessierende Verbindung sind zunächst die Retentionszeiten in drei iso-eluotropen Elutionsgemischen experimentell zu ermitteln, um anschließend die optimale Zusammensetzung des Eluenten mit Hilfe des geometrischen Modells eines Prismas errechnen zu können. Schrittweise werden anschließend durch ein Rechenprogramm alle möglichen Mischungsverhältnisse der Eluenten gebildet und die zugehörigen Retentionszeiten berechnet. Unter Berücksichtigung vorgegebener Optimierungskriterien wird eine geeignete mobile Phase zur Trennung aller Verbindungen mit den entsprechenden Retentionszeiten angegeben. Das Rechenprogramm wurde in Basic für einen herkömmlichen Heimcomputer mit einer 64k Bytes Ram-, 32k Bytes Rom-Konfiguration geschrieben. Das Verfahren kann auch für die Optimierung anderer chromatographischer Parameter herangezogen werden.
Simple procedure for optimizing multicomponent mobile phases in high-performance liquid chromatography
Summary A simple systematical approach to optimize separations in high-performance liquid chromatography (HPLC) with multicomponent mobile phase is described.The retention data in three iso-eluotropic solvent mixtures are required to evaluate the optimal composition of the mobile phase using the geometric model of a prism. Various compositions of the solvent mixtures are calculated step-by-step. For each possible composition of the mobile phase the corresponding capacity factors of every compound could be predicted exactly.The calculated retention behaviour allows to find out the optimal composition of the eluent to separate all compounds. The calculations are performed by a convential Basic-programmable calculator with a configuration of 64k bytes ram and 32k bytes rom. The presented model can also be applied to determine other chromatographic parameters.
  相似文献   

14.
Comprehensive 2-D LC is an emerging separation technique that has seen a rapid increase in applications in the last decade. The technique has been applied for the separation of numerous complex mixtures including triacylglycerides (TAG). Determination of TAG in food products such as rice, palm, and canola oils have been previously described and the technique of choice utilizes a silver-modified silica column with hexane-ACN as the mobile phase. Repeated retention time inconsistencies were experienced in our studies when this mobile phase was applied to the separation of natural and synthetic mixtures containing TAG. The present report summarizes a study performed to determine the relative stability of ACN, propionitrile (PCN), and butyronitrile (BCN) at concentrations ranging from 0.43 to 2.8% in hexane and heptane. The data obtained suggest that unless evaporative loss of the mobile phase is prevented, TAG retention time irreproducibility can be significant when using mobile-phase mixtures prepared with ACN or PCN. BCN should be used as the solvent modifier in cases where evaporation cannot be prevented.  相似文献   

15.
Butylacrylate – styrene co-polymers prepared by atom transfer radical polymeratization were separated on an octadecyl silica column by gradient elution with tetrahydrofuran in water, up to the molar masses 10,000. In reversed-phase high performance liquid chromatography (RP-HPLC), the retention of macromolecules is affected very significantly even by change of a few tenths of per cent of the organic solvent in the aqueous-organic mobile phase. Therefore, gradient elution was used for the determination of the parameters of the equations describing the effects of the mobile phase on the retention behaviour of synthetic polymers. The retention parameters of homopolymers and copolymers were calculated from the gradient data using two retention models. The retention behaviour of the copolymers was described using the experimental gradient retention data for homopolymers.  相似文献   

16.
17.
金银哲  卢敬昊 《色谱》2006,24(5):466-470
有效地确定了反相高效液相色谱分离儿茶酚化合物的最佳条件。在水和甲醇的二元流动相里分别加入乙酸缓冲液,利用基于ln k=ln kw +SF, k=A+B/F, ln k=L+MF+NF2 (F是流动相中有机物甲醇的体积分数)等保留因子的一次或二次方程式的塔板理论得到色谱分离结果;利用保留原理得到等度和梯度洗脱的最佳条件。得出最佳初始流动相是含0.1%乙酸的水和含0.1%乙酸的甲醇(体积比为75∶25)的混合溶液;梯度洗脱条件:初始流动相保持15 min,然后用10 min的时间将上述二元流动相的体积比线性变换成50∶50,直到完成全部分离。通过实验证实该计算结果与实验值相近。  相似文献   

18.
The basic principle of optimal method called “moving overlapping resolution mapping method” to select the optimal binary mobile phase composition of multi-step linear gradient liquid chromatography is discussed with simultaneously considering effects of position of solute inside the column and mobile phase composition on peak resolution and retention value, then a BASIC program based on this principle is developed in IBM-PC computer. The validities of both principle of optimization and BASIC program are confirmed by separation of samples containing bile acids and PAHs in RP-HPLC.  相似文献   

19.
根据反相液相色谱保留模型和Martin方程, 采用热力学方法导出了一组包括各种色谱参数(如柱温、流动相中有机改性剂浓度以及溶质、溶剂和键合相表面烷基配体中的碳数)的线性保留方程。利用这组方程能够解释反相液相色谱中各种线性保留规律和实验现象, 并预测和实验验证了多种文献未报道的线性规律。  相似文献   

20.
Summary The normal-phase chromatographic retention behaviour of polyesters on bare silica and on a polymer-based polyamine (PA) column has been studied with a variely of binary mobile phases under isocratic conditions. The dependence of experimental retention data on the degree of polymerization (p) and on mobile phase composition (φ) was characterized by to an approach developed by Jandera et al. The bulky repeating unit and the relatively highly polar end groups of the polyesters both had a large influence on retention behaviour. The two effects in combination explain the molar-mass-independent retention observed experimentally at a particular mobile phase composition for all the mobile phase—stationary phase combinations investigated. These conditions were found to be independent of the type of end group. End group separation on a silica column improves when the polarity of the less polar solvent is increased. End group separation is better on the PA column because of a greater difference between the adsorption energy of the alcohol and acid end groups. Better prediction of retention data on the PA column was achieved by use of an approach which assumes two different types of adsorption site. Results enabled further understanding of retention behaviour in normalphase gradient polymer-elution chromatography (NPGPEC) and explained both the dependence of the order of elution onp and differences between the end-group selectivity of different systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号