首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We utilized the metathesis reaction to synthesize a new type of multifunctional polymer that contains a conjugated backbone and a second-order NLO chromophore as a pendant group. The 1,6-heptadiyne derivatives bearing NLO chromophores were easily polymerized by using a metathesis catalyst to give corresponding polymers with large optical nonlinearities. Molecular structural characterizations for the resulting polymers were achieved by 1H- and 13C-NMR, FTIR, and UV-visible spectroscopies. Soluble polymers were obtained up to 72 mol % of chromophore monomer portion in the copolymer. These amorphous polymers exhibited good film-forming abilities and thermal stability. The electro-optic coefficient, r33, of the poled polymer films was in the range of 0.5–10.1 pm/V, and the nonresonant values of the third-order NLO coefficient, χ(3) was found to be about 10−11 esu. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Herein the stereoselective two‐step synthesis of pure exo‐5‐trimethylsilylnorbornene is reported. The monomer proved to be highly reactive in both metathesis and addition polymerization. ROMP polymerization was catalyzed by the first‐generation Grubbs catalyst. High‐molecular‐weight saturated addition polymers were prepared using nickel or palladium complexes as precatalysts and Na+[B(3,5‐(CF3)2C6H3)4] and/or MAO as cocatalysts. The obtained addition polynorbornenes are highly gas permeable and microporous materials possessing large free volume and BET surface area (up to 540 m2/g). The influence of the substituent orientation (exo‐ vs. exo‐/endo‐mixture) on polymer properties was established. The metathesis polymer based on exo‐isomer exhibits 1.5‐ to 2‐fold increase of permeability coefficients for all gases in comparison to the similar polymer based on the mixture of exo‐ and endo‐isomers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1234–1248  相似文献   

3.
A series of ethylene–vinyl chloride‐like copolymers were prepared by ring‐opening metathesis polymerization (ROMP). The route to these materials included the bulk polymerization of 5‐chlorocyclooctene and 5,6‐dichlorocyclooctene with the first‐generation Grubbs' catalyst, followed by diimide hydrogenation of the resulting unsaturated polymers. In addition, the amount of chlorine in these materials was varied by the copolymerization of 5‐chlorocyclooctene with cyclooctene. These materials were fully characterized by NMR (1H and 13C), gel permeation chromatography, and Fourier transform infrared spectroscopy. Finally, hydroboration was carried out on the ROMP product of 5‐chlorocyclooctene to yield a polymer, which was effectively a vinyl alcohol–vinyl chloride–ethylene terpolymer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2107–2116, 2003  相似文献   

4.
The usefulness of liquid carbon dioxide as a solvent for polymerization of ethylene was studied. The effect of liquid carbon dioxide on the polymerization was investigated under conditions of the pressure of 400 kg./cm.2 over the temperature range 20–45°C. by using γ-radiation and AIBN as initiators. The infrared spectrum of the polymers showed that carbon dioxide had little effect on the polymer structure. The polymers contained no combined carbon dioxide and only small amounts of vinylidene unsaturation. The methyl content of the polymers was 0.5–4.0 CH3/1000C. The polymer yield and molecular weight were found to be decreased by the addition of carbon dioxide in both polymerization by γ-radiation and AIBN. The number of polymer molecules formed per unit time increased with the content of carbon dioxide in the γ-ray polymerization, and was constant in the case of AIBN. The advantages of the use of liquid carbon dioxide as a solvent in this polymerization were also considered from the viewpoints of the continuous process, the separation of polymer, the stability of carbon dioxide to radiation, and commercial applications.  相似文献   

5.
The effect of postpolymerization epoxidation of metathesis polynorbornenes on their gas-transport behavior is studied. For two polymers, unsubstituted polynorbornene and poly(trimethylsilylnorbornene), postpolymerization modification via double bonds is implemented by epoxidation under the action of m-chloroperbenzoic acid to high conversions (95–100%). For initial polymers and their epoxidation products, the permeability and diffusion coefficients are measured and the solubility coefficients are estimated. It is shown that, for both initial polymers, functionalization leads to a marked reduction in permeability (by a factor of 2–10) and diffusion coefficients (by a factor of 3–10); simultaneously, the separation factors increase by a factor of 2–6. Although for all gases the solubility coefficients decrease as a result of epoxidation, the coefficients of CO2 solubility in both epoxidated polymers increase. This effect may be explained by specific interactions of a СО2 molecule possessing the quadrupole moment with С–О–С bonds appearing in a polymer.  相似文献   

6.
Richard W. Heo 《Tetrahedron》2004,60(34):7225-7235
A substituted ferrocenophane, 1,1′-((1-tert-butyl)-1,3-butadienylene)ferrocene, was synthesized and polymerized via ring-opening metathesis polymerization (ROMP) to give soluble high molecular weight polymers with ferrocenylene units in the backbone. The monomer readily underwent polymerization upon exposure to a tungsten-based metathesis initiator, W(CHC6H4-o-OMe)(NPh)[OCMe(CF3)2]2 (THF), to give high molecular weight polymers (Mw=ca. 300,000). The molecular weights could be varied systematically by adjusting the monomer-to-catalyst ratio. UV/vis spectra revealed a bathochromic shift for the polymer, consistent with enhanced conjugation compared to the monomer. The polymer exhibited thermal properties similar to oligomeric poly(ferrocenylene). Cyclic voltammetry of the polymer suggested that the iron centers are coupled electronically. Upon doping with I2 vapor, the polymers displayed semiconducting properties (σ=10−5 S cm−1). Theoretical calculations were used to evaluate the nature of the bonding in these and related polymers.  相似文献   

7.
The eight‐membered cyclic monomer, prepared by Diels–Alder reaction of 1,5‐cyclooctadiene and anthracene, polymerized via Ru‐catalyzed ring‐opening metathesis to efficiently afford high polymers (Mn up to 631,000). Unsaturated moieties in the main chain of the obtained polymer were hydrogenated with a homogeneous ruthenium catalyst in quantitative conversion, confirmed by 1H‐NMR measurement. The self‐standing membranes were provided by casting the tetrahydrofuran solutions of both nonhydrogenated and hydrogenated polymers. The obtained membranes showed high transparency in the region of >300 nm with mechanical flexibility. Thermal gravimetric analysis revealed that both nonhydrogenated and hydrogenated polymers decomposed in two stages. The first‐stage decomposition starting at around 230 °C was caused by retro Diels–Alder reaction forming anthracene, proven by pyrolysis gas chromatography mass spectroscopy (GC‐MS) analyses. Mechanical grinding of the polymers induced the formation of anthracene in solid state, which transformed the polymer into blue‐luminescent materials under UV irradiation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1392–1400  相似文献   

8.
The application of the WCl6–e?–Al–CH2Cl2 system to acyclic diene metathesis polymerization of 1,9‐decadiene is reported. The polyoctenamer formed is of a weight‐average molecular weight of 9000 with a polydispersity of 1.92. IR and NMR spectral analyses indicate the retention of the double bonds in the polymer structure with high trans content as expected from a step condensation reaction. This relatively stable catalytic system, however, also activates the competing vinyl addition reactions while being inactive in ring‐closure metathesis reactions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
A number of classes of polynorbornenes containing cationic iron moieties within their side chains were prepared via ring‐opening metathesis polymerization with a ruthenium‐based catalyst. The iron‐containing polymers displayed excellent solubility in polar organic solvents. The weight‐average molecular weights of these polymeric materials were estimated to be in the range of 18,000–48,000. Thermogravimetric analysis of these polymers showed two distinct weight losses. The first weight loss was in the range of 204–260 °C and was due to the loss of the metallic moieties, whereas the second weight loss was observed at 368–512 °C and was due to the degradation of the polymer backbone. Cyclic voltammetry studies of the iron‐containing polymers showed that the 18 e? cationic iron centers underwent a reduction to give the neutral 19 e? complexes at half‐wave potential (E1/2) = ?1.105 V. Photolysis of the metallated polymers led to the isolation of the norbornene polymers in very good yields. Differential scanning calorimetry studies showed a sharp increase in the glass‐transition temperatures up to 91 °C when rigid aromatic side chains were incorporated into the norbornene polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3053–3070, 2006  相似文献   

10.
The article deals with synthesis, characterization, and polymerization of 5-norbornene-2,3-dicarboximide end-capped resins (bisnadimides) based on 4,4′-diaminodiphenylether, 1,4/1,3-bis(4′-aminophenoxy) benzene, 2,2′-bis[4-(4′-aminophenoxy)phenyl]propane, and bis[4-(4′-aminophenoxy)phenyl]sulphone. Both exo and endo bisnadimides were prepared by reacting the aromatic diamines with exo or endo nadic anhydride in glacial acetic acid at 120°C. The exo or endo bisnadimides could be distinguished on the basis of differences observed in IR or 1H-NMR spectra. Both thermal (in solid state) and metathetical polymerization (using WCl6/tetramethyltin catalyst and chlorobenzene solvent) of bisnadimides was carried out. Only exo bisnadimides could be polymerized using metathesis reaction whereas thermal polymerization of both endo and exo bisnadimide could be successfully carried out at 300°C in static air atmosphere. The polymers were highly crosslinked and insoluble in common organic solvents. The polymers obtained by metathesis polymerization were light brown in color whereas those obtained by thermal polymerization were dark brown in color. Thermal stability of the thermally polymerized exo or endo bisnadimides was comparable. These polymers were stable up to 400°C and decomposed in a single step above this temperature. The char yield at 800°C depended on the structure of the polymer and was in the 39–56% range. The polymers formed by metathesis polymerization showed a 1–3% weight loss in the temperature range 226–371°C and decomposed in a single step above 440°C. The char yields were higher in these polymers (53–71%) compared to those obtained by thermal polymerization. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2323–2331, 1997  相似文献   

11.
《Analytical letters》2012,45(16):2583-2596
Molecularly imprinted polymers grafted on to the surface of carboxyl-modified multiwalled carbon nanotubes were developed using methacrylic acid as a functional monomer and trihydroxymethylpropyl trimethylacrylate as a crosslinker for application to rhodamine B determination. The synthesis, characteristics, and evaluation of the molecularly imprinted polymer are described. The apparent morphology of the polymers was characterized by scanning electron microscopy. To evaluate the binding ability of the molecularly imprinted polymers, equilibrium binding experiments were conducted and revealed the maximal binding capacity to be 561.54 µg g?1. The introduction of nanomaterials into the polymer composite made important contributions to the affinity enhancement and recognition properties of the molecularly imprinted polymers. Moreover, the polymers were preliminarily applied as an adsorbent for separation and extraction of Rhodamine B from dried chili powder samples, based on solid phase extraction technology. The calibration curve was linear in the range of 0–7 µg mL?1. For all tested samples, recoveries were reliable and in the range of 101.75–109.73%. The relative standard deviation ranged from 6.43–14.32%, which demonstrated that the polymer has potential for preconcentration of Rhodamine B from chili powder samples.  相似文献   

12.
Doubly functionalized polar norbornenes 3a – 3g substituted by both a variety of ester and cyano groups were polymerized by ring‐opening metathesis polymerization (ROMP) with a Ru carbene complex 2 bearing 3‐bromopyridine as a ligand (third generation Grubbs' catalyst) in a living manner. The successive hydrogenation of the main‐chain double bond in the synthesized living ROMP polymers 4a – 4g with a hydridoruthenium complex was exploited. The comparison of thermal properties of a series of ring‐opening metathesis polymers 4a – 4g with those of their hydrogenated derivatives 5a – 5g revealed the decrease of glass transition temperatures (Tg) but little change of the 5% decomposition temperature (Td5). In all cases examined in this study, a decrease of Tg by hydrogenation was around 20–40 °C, regardless of the ester substitutents. In the presence of the additional PCy3, triethylamine, and methanol after complete consumption of monomer 3a under the living ROMP condition, the tandem ROMP‐hydrogenation of the resulting polymer 4a generated in situ was attained under a H2 (9.8 MPa) atmosphere at 80 °C to afford the hydrogenated polymer 5a , retaining the narrow polydispersity of 1.03. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3314–3325 2008  相似文献   

13.
In this article, the separation of zinc from aqueous samples by solid-phase extraction based on a molecular imprinting technique is described. Zn-imprinted polymer was prepared by free radical solution polymerisation in a glass tube containing ZnSO4, morin, 4-vinylpyridine as a functional monomer, ethyleneglycoldimethacrylate as a cross-linking monomer, and 2,2′-azobisisobutyronitrile as an initiator. The obtained polymer block was ground and sieved (55–75 µm) and the Zn–morin complex was separated from polymer particles by leaching with 2M HCl. The synthesised polymer particles have been characterised by IR and differential scanning calorimetric studies either before or after leaching. The effects of different parameters, such as pH, adsorption and desorption time, type and minimum amount of the eluent for elution of the complex from polymer were evaluated. Extraction efficiency more than 99% was obtained by elution of the polymers with 10 mL of CH2Cl2–dimethyl sulfoxide (1 : 1, v/v). The detection limit of the proposed method was 2.9 µg L?1. A dynamic linear range in the range of 25–200 µg L?1 was obtained. The relative standard deviation was found to be below 9.2%. In addition, the influence of various cationic and anionic interferences on the complex recovery was studied. The method was applied to the recovery and determination of Zn in a few different real samples.  相似文献   

14.
Redox‐active 6‐oxoverdazyl polymers were synthesized via ring‐opening metathesis polymerization (ROMP) and their solution, bulk, and thin‐film properties investigated. Detailed studies of the ROMP method employed confirmed that stable radical polymers with controlled molecular weights and narrow molecular weight distributions (Ð < 1.2) were produced. Thermal gravimetric analysis of a representative example of the title polymers demonstrated stability up to 190 °C, while differential scanning calorimetry studies revealed a glass transition temperature of 152 °C. Comparison of the spectra of 6‐oxoverdazyl monomer 12 and polymer 13 , including FT‐IR, UV‐vis absorption, and electron paramagnetic resonance spectroscopy, was used to confirm the tolerance of the ROMP mechanism for the 6‐oxoverdazyl radical both qualitatively and quantitatively. Cyclic voltammetry studies demonstrated the ambipolar redox properties of polymer 13 (E1/2,ox = 0.25 and E1/2,red = ?1.35 V relative to ferrocene/ferrocenium), which were consistent with those of monomer 12 . The charge transport properties of thin films of polymer 13 were studied before and after a potential of 5 V was applied, revealing a drastic drop in the resistivity from 106?1010 Ω m or more to 1.7 × 104 Ω m and suggesting the potential usefulness of polymer 13 in bistable electronics. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1803–1813  相似文献   

15.
The acyclic diene metathesis (ADMET) polymerization was utilized for the design of the ADMET polymer (Mn = 21,200 g/mol, Mw/Mn = 1.74) with pendant perfluorophenyl ester functionality using Grubbs first generation catalysis overnight in bulk at 80 °C. Next, a wide variety of functional groups, like benzyl, octyl, propargyl, allyl, and furfuryl was quantitatively incorporated to the ADMET polymer backbone through various amines using activated ester substitution reaction. The ADMET polymers studied in this work were characterized using 1H, 13C, and 19F NMR, GPC and DSC and displayed a monomodal distribution and a rather broad polydispersity index in the range of ?1.33 to 1.90. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2593–2598  相似文献   

16.
Core–shell-type polymers based on a hyperbranched (hb) poly(ethylenimine) core and a shell with a variable maltose content were applied as coating materials for fused silica capillaries. A new, simple, fast, and reproducible way of modifying the capillary walls through the physical adsorption of the core–shell-type polymers using a Cu2+ support was developed. The coating created by this method was found to be very stable compared to the coating created using a solution of the polymer only. Capillaries modified with the core–shell-type polymers were tested by applying them to the electrophoretic separation of catecholamines and proteins. The modified capillaries showed high efficiencies (up to 800,000 theoretical plates per meter for lysozyme) and separation selectivities. The highest efficiency was achieved using capillaries modified with the polymer containing the lowest content of maltose in the shell and the most accessible positively charged core. Various online concentration techniques were also tested as a means to lower detection limits further, making it possible to analyze proteins in biological fluids (saliva) as well as catecholamines in human urine after SPE using activated alumina.  相似文献   

17.
Replaceable sieving polymers are the fundamental component for high‐resolution nucleic acids separation in CE. The choice of polymer and its physical properties play significant roles in influencing separation performance. Recently, reversible addition fragmentation chain transfer (RAFT) polymerization has been shown to be a versatile polymerization technique capable of yielding well‐defined polymers previously unattainable by conventional free‐radical polymerization. In this study, a high molecular weight poly‐(N,N‐dimethylacrylamide) (PDMA) at 765 000 gmol?1 with a polydispersity index of 1.55 was successfully synthesized with the use of chain transfer agent—2‐propionic acidyl butyl trithiocarbonate in a multistep sequential RAFT polymerization approach. This study represents the first demonstration of RAFT polymerization for synthesizing polymers with the molecular weight range suitable for high‐resolution DNA separation in sieving electrophoresis. Adjustment of pH in the reaction was found to be crucial for the successful RAFT polymerization of high molecular weight polymer as the buffered condition minimizes the effect of hydrolysis and aminolysis commonly associated with trithiocarbonate chain transfer agents. The separation efficiency of 2‐propionic acidyl butyl trithiocarbonate PDMA was found to have marginally superior separation performance compared to a commercial PDMA formulation, POP?‐CAP, of similar molecular weight range.  相似文献   

18.
A polymer consisting of a polynorbornene backbone with perylene diimide (PDI) pendant groups on each monomeric unit is synthesized via ring opening metathesis polymerization. The PDI pendant groups along the polymer backbone, studied by UV–vis absorption, fluorescence emission, and electron paramagnetic resonance spectroscopy in addition to electrochemical methods, show evidence of molecular aggregation and corresponding electronic coupling with neighboring groups, which forms pathways for efficient electron transport from one group to another in a specific reduced form. When n‐doped, the title polymer shows redox conductivity of 5.4 × 10−3 S cm−1, comparable with crystalline PDI materials, and is therefore a promising material for use in organic electronics.  相似文献   

19.
A series of novel soluble polythiophene derivatives containing triphenylamine moiety were synthesized by Grignard metathesis (GRIM) method. The structures of the polymers were characterized and their physical properties were investigated. High molecular weight (Mn up to 25,800 g/mol) and thermostable polymers were obtained. The absorption spectra demonstrated that the absorption wavelength of the polymers could be tuned dramatically by introducing thiophene units in the main chain of the polymers. Photoluminescence spectra indicated that there was intramolecular energy transfer from the side chain to the main chain, and the maximum emission was red‐shifted gradually with the increase of thiophene units in the main chain. Cyclic voltammetry displayed that the polymers possessed relatively high oxidation potential, which promised good air stability and high open circuit voltage for photovoltaic cells application. Finally, bulk heterojunction photovoltaic devices were fabricated by using the polymers as donors and (6,6)‐phenyl C61‐butyric acid methyl ester (PCBM) as acceptor. The maximal open circuit voltage of the photovoltaic cells reached 0.71–0.87 V and the power conversion efficiencies of the devices were measured between 0.014% and 0.45% under white light at 100 mW/cm2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3970–3984, 2008  相似文献   

20.
(±)‐exo,endo‐5,6‐Bis{[[11′‐[2″,5″‐bis[2‐(3′‐fluoro‐4′‐n‐alkoxyphenyl)ethynyl]phenyl]undecyl]oxy]carbonyl}bicyclo[2.2.1]hept‐2‐ene (n = 1–12) monomers were polymerized by ring‐opening metathesis polymerization in tetrahydrofuran at room temperature with Mo(CHCMe2Ph)(N‐2,6‐iPr2Ph)(OtBu)2 as the initiator to produce polymers with number‐average degrees of polymerization of 8–37 and relatively narrow polydispersities (polydispersity index = 1.08–1.31). The thermotropic behavior of these materials was independent of the molecular weight and therefore representative of that of a polymer at approximately 15 repeat units. The polymers exhibited an enantiotropic nematic mesophase when n was 2 or greater. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4076–4087, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号