首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyphenols chemically bonded to a molecular platform based on macrocyclic tetraindole porphyrin derivatives were synthesized for the first time. The tetraindole was prepared by two-step tetramerization of 3-(4′-bromophenyl)-4,6-dimetoxyindole. Polyphenols of this type were obtained by the Suzuki–Miyaura reaction between bromo-containing cyclic tetraindole and monoboryl-substituted porphyrin. The subsequent transformations of this molecular construction gave rise to epoxidized polyphenol on a tetraindole support, which served for the development of a new negative resist for electron-beam nanolithography. The resist can form patterns with a 12 nm resolution.  相似文献   

2.
A new strategy for the synthesis of fluorene-containing polyphenols of porphyrin series by the Suzuki–Miyaura reaction of hexabromoporphyrin and monoboryl derivative of substituted fluorene has been proposed. Several sequential chemical transformations of the prepared porphyrin allowed preparation of polyphenol derivative of the noted compound. Similar polyphenol has been used as a basis for the design of positive photoresists for nanolithography with 13.5-nm exposing radiation, which can produce topological structures with resolution 22–16 nm.  相似文献   

3.
A new strategy for the synthesis of fluorene-containing porphyrins by Suzuki–Miyaura reaction using a tetraboryl porphyrin derivative and a fluorene derivative of 4-bromoaniline has been proposed. A number of consecutive chemical transformations of the prepared porphyrin have led to formation of a polyphenol derivative of the above compound. Positive photoresists for lithography with exposing radiation wavelength of 13.5 nm have been developed on the basis of a similar polyphenol, which provided preparation of topological structures with a resolution of 22–16 nm.  相似文献   

4.
A new strategy for the synthesis of adamantane-containing polyphenols of a porphyrin series has been suggested on the basis of Suzuki–Miyaura reaction between 1,3,5,7-tetrakis(4'-iodophenyl)adamantane and a monoboryl derivative of substituted porphyrin. The synthesis of this porphyrin assembly on the adamantane core followed by chemical transformations of this compound has provided a possibility to synthesize the corresponding polyphenol derivative. The latter has been used in the development of positive photoresists for nanolithography with exposure to radiation at a wavelength 13.5 nm capable of producing topological structures with a resolution of 16 nm.  相似文献   

5.
Summary: New positive‐type photoresist systems based on enzymatically synthesized polyphenols have been developed. The photoresist thin film consisting of the polyphenol and a diazonaphthoquinone derivative was prepared on copperfoil‐coated epoxy resins and exposed to UV light with different doses. The polyphenols from the bisphenol monomers exhibited high photosensitivity, comparable with a conventional cresol novolac. The sensitivity could be controlled by changing the structure of the polyphenols. Furthermore, the present photoresist showed excellent etching resistance.

Characteristic exposure curves of poly( 1 )/DNQ and poly( 5 )/DNQ (both 70:30 wt.‐%) with different phenylene unit contents.  相似文献   


6.
A new strategy has been suggested for the synthesis of sumanene-containing polyphenols chemically bound to a molecular platform based on the triindolyl macrocycle. The initial assembly has been obtained by the Suzuki–Miyaura reaction of a bromo-containing indolyl macrocycle and boryl derivative of N,N'-disumanenylaniline. Subsequent benzylation with 3,5-dimethoxybenzyl bromide, exhaustive demethylation of the modified macrocycle, and partial blocking of the corresponding phenolic hydroxyls by two different acid-labile protective groups have led to the formation of the target polyphenol containing sumanene fragments. The obtained polyphenol has allowed us to develop on its basis a new positive resist for electronbeam nanolithography. This resist can realize topological structures with resolution of 9–12 nm.  相似文献   

7.
We have prepared and isolated the monodiazonium salt of nickel (II) tetraphenylporphyrin and grafted the corresponding complex to glassy carbon, pyrolysed photoresist film, gold and indium tin oxide surfaces via reduction of the diazonium moiety. Characterisations of the films by voltammetry, UV–vis spectroscopy and atomic force microscopy depth profiling confirm that the metallated porphyrin is intact in the film and is stably attached to the surface with well-behaved, but highly solvent-dependent electrochemistry. Under the grafting conditions used, the films appear to have close to monolayer thickness with the porphyrin macrocycles oriented predominantly upright on the surface.  相似文献   

8.
Piperazine and 1,2-diaminobenzene have been previously used as anchoring molecules to synthesize 3-hydroxy-4-pyridinone (3,4-HPO) tetradentate ligands affording ligands with different flexibility and coordination properties. In order to have a relatively rigid and hindered structure, a porphyrin platform was selected to anchor one or two 3,4-HPO chelating units. This platform provides an additional N4 coordination sphere and also very interesting optical properties to the synthesized conjugates. Depending on the metal ion present in the porphyrin core, conjugates with different spectroscopic properties are obtained. EPR spectroscopy has been used to characterize the copper(II) metalloporphyrins and to monitor and identify the species formed upon addition of copper(II) to solutions of two porphyrin conjugates with one and two 3,4-HPO arms. The porphyrin conjugates having two 3,4-HPO units are ligands that provide two separate binding sites with N4 and O4 coordination spheres, which allow accommodation of two metal ion centers that may be distinguished by spectroscopic methods.  相似文献   

9.
Photoresists based on molecular glasses are gaining more and more importance as resist material to replace polymer based photoresist. In addition environmental issues have to be considered in the long-term. Therefore the paper describes novel negative photoresists containing a ternary mixture of a glassy low molecular functional polyphenol where the film preparation is possible by solvent-free physical vapor deposition. After UV light exposure and a thermal annealing process to enable acid catalyzed crosslinking between the molecular glass and the crosslinker, the photoresist was developed using only water to give well-defined patterns. In order to experimentally study efficiently the multiple parameters such as composition, exposure dose, and development times combinatorial PVD techniques were utilized.  相似文献   

10.
A catalytic coupling reaction between 4-amino antipyrine and a N,N-disubstituted aniline derivative has been exploited in the indirect electrochemical detection of horseradish peroxidase (HRP) and of a biomimetic catalyst, the iron(III) sulfonated tetraphenyl porphyrin. In the presence of hydrogen peroxide and one of the two catalysts a cationic electroactive quinone-iminium dye P+ was formed and detected by linear scan voltammetry using a screen-printed electrode coated with a Nafion film. Detection limits of 10(-12) M for HRP and 4 x 10(-10) M for the iron porphyrin have been achieved. In conclusion the iron porphyrin is considered to be a promising alternative to the HRP label in enzyme immunoassays with electrochemical detection.  相似文献   

11.
A modular building-block approach has been developed for the construction of linear amphipathic porphyrin arrays. The reaction of meso-(trifluoromethyl)dipyrromethane and an aldehyde under the conditions of the two-step room temperature porphyrin synthesis affords the trans-substituted porphyrin (13-56% yields). A similar reaction with two different aldehydes provides access to porphyrins bearing two different functional groups. An ethyne porphyrin and an iodo porphyrin (either free base or zinc) are selectively joined via Pd(0)-catalyzed coupling reactions, affording a linear array with porphyrins in defined metalation states. Coupling of a zinc-porphyrin bearing iodo and ester groups with a free base porphyrin bearing ethyne and ester groups yielded the zinc-free base porphyrin dimer. Coupling of a bis-ethyne porphyrin with a porphyrin bearing iodo and ester groups afforded the porphyrin trimer. Cleavage of the esters yielded the amphipathic porphyrin dimer and trimer arrays. The arrays with adjacent zinc and free base porphyrins undergo efficient electronic energy transfer. Both amphipathic porphyrin arrays have been incorporated into L-alpha-phosphatidylcholine vesicles. This versatile synthetic strategy provides access to a family of porphyrin arrays for studies of photophysical processes in supramolecular assemblies.  相似文献   

12.
The interaction between the achiral sulfonated porphyrin 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin, H 2TPPS 4 (4-), and two chiral cationic surfactants has been studied by optical absorption, fluorescence, and circular dichroism (CD) spectroscopies. At surfactant concentrations above the critical micellar concentration (cmc) the porphyrin is included in the micellar aggregates, but it is CD silent. Below the cmc at a definite porphyrin/surfactant stoichiometry the formation of heteroaggregates with transfer of chirality to the porphyrin chromophore occurs. The preferred surfactant/porphyrin stoichiometry is 3:1, which suggests a structure driven by electrostatic and hydrophobic interactions between porphyrin and surfactant and dipolar and ionic interactions with the water solution. At surfactant concentrations above the cmc, depending on the protocol of preparation of the samples, the formation of the two kinds of aggregates can be observed, reversible for the simple surfactant micelles incorporating the porphyrin, but irreversible for the heteroaggregates.  相似文献   

13.
The tetraruthenated porphyrin, u.-[/wes0-5,1O,15,2O-tet-ra(pyridyl)porphyrin]tetrakis[ftis-(bipyridine)chloride ruthenium(II)] (TRP) is a supramolecular cationic species. The aim of the present investigation was to evaluate the photodynamic properties of TRP and Zn-TRP to damage DNA with emphasis on the mechanistic aspects. The ability for tetraruthenated porphyrin derivatives to induce photosensitization reactions has been determined using 2′-deoxyguanosine as a DNA model compound. The main photooxidation products of the targeted nucleoside were identified and classified according to their mechanisms of formation, involving either a radical pathway (type I) or a singlet oxygen-mediated mechanism (type II). Quantification of the different oxidation products provides a means to evaluate the relative contribution of type I and type II pathways associated with the oxidative photosensitization of 2′-deoxyguanosine by tetraruthenated porphyrin derivatives. Results indicate that x02 plays a major role in the mechanism of photooxidation mediated by these porphyrin derivatives. In addition an increase of the photosensitizing effect in the presence of zinc is observed. For each sensitizer, the ratio between type II and type I photoproducts has been calculated and compared to that of other known dyes such as methylene blue and riboflavin.  相似文献   

14.
A meso,meso-linked porphyrin trimer, (ZnP)3, as a light-harvesting chromophore, has been incorporated for the first time into a photosynthetic multistep electron-transfer model including ferrocene (Fc) as an electron donor and fullerene (C60) as an electron acceptor, to construct the ferrocene-meso,meso-linked porphyrin trimer-fullerene system Fc-(ZnP)3-C60. Photoirradiation of Fc-(ZnP)3-C60 results in photoinduced electron transfer from both the singlet and triplet excited states of the porphyrin trimer, 1(ZnP)3* and 3(ZnP)3*, to the C60 moiety to produce the porphyrin trimer radical cation-C60 radical anion pair, Fc-(ZnP)3*+-C60*-. Subsequent formation of the final charge-separated state Fc+-(ZnP)3-C60*- was confirmed by the transient absorption spectra observed by pico- and nanosecond time-resolved laser flash photolysis. The final charge-separated state decays, obeying first-order kinetics, with a long lifetime (0.53 s in DMF at 163 K) that is comparable with that of the natural bacterial photosynthetic reaction center. More importantly, the quantum yield of formation of the final charge-separated state (0.83 in benzonitrile) remains high, despite the large separation distance between the Fc+ and C60*- moieties. Such a high quantum yield results from efficient charge separation through the porphyrin trimer, whereas a slow charge recombination is associated with the localized porphyrin radical cation in the porphyrin trimer. The light-harvesting efficiency in the visible region has also been much improved in Fc-(ZnP)3-C60 because of exciton coupling in the porphyrin trimer as well as an increase in the number of porphyrins.  相似文献   

15.
A new and general synthesis of porphyrin dimers is described. The synthesis involves the reaction of dibromoalkanes with phenolic porphyrins, such as 5(4-hydroxyphenyl)-10,15,20-tritolylporphyrin, to form σ-bromoalkyl porphyrin ethers. The latter compounds are then reacted with a second phenolic porphyrin to give porphyrin dimers. A mixed metalloporphyrin dimer has been prepared which contains both V(IV) and Cu(II). The compounds have been examined spectroscopically. The free-base porphyrin dimers show a splitting of the intense Soret band. This is interpreted as indicative of weak singlet energy transfer between the covalently linked porphyrins.  相似文献   

16.
以二甲基甲酰胺为溶剂,5-对氨基苯基-10,15,20-三苯基卟啉与苯甲醛直接反应得到一种不对称希夫碱卟啉化合物,并合成了它的稀土配合物.用元素分析、紫外-可见光谱、红外光谱1、H核磁共振以及X射线光电子能谱对这些化合物进行了表征,推测了稀土乙酰丙酮卟啉配合物的结构,稀土离子与乙酰丙酮的两个O原子和卟啉的4个吡咯N原子配位,配位数为6,稀土离子位于卟啉平面的上方.  相似文献   

17.
The formation of a porphyrin–fullerene dyad from 2′-(pyridin-4-yl)-5′-(pyridin-2-yl)-1′-(pyridin-3-ylmethyl)-2′,5′-dihydro-1′H-pyrrolo[3′,4′: 1,9](C60-Ih)[5,6]fullerene and (2,3,7,8,12,13,17,18-octaethylporphyrinato) manganese(III) with axial chloride ligand has been studied on a quantitative level with the goal of obtaining supramolecules possessing biological activity. Preliminarily, the reaction of manganese(III) porphyrin with pyridine has been studied. The donor–acceptor dyads are formed either instantaneously and reversibly (pyridine) or slowly and irreversibly (substituted fullerene). In both cases, the reaction is a one-step process for which thermodynamic and kinetic parameters have been determined. The results can be used to optimize conditions for the synthesis of porphyrin–fullerene dyads. The obtained dyads have been characterized by spectral data and stability constants.  相似文献   

18.
Ruthenium porphyrin functionalized single-walled carbon nanotube arrays have been prepared using coordination of the axial position of the metal ion onto 4-aminopyridine preassembled single-walled carbon nanotubes directly anchored to a silicon(100) surface (SWCNTs-Si). The formation of these ruthenium porphyrin functionalized single-walled carbon nanotube array electrodes (RuTPP-SWCNTs-Si) has been monitored using infrared spectroscopy (IR), differential pulse voltammetry (DPV), atomic force microscopy (AFM), laser desorption time-of-flight mass spectroscopy (LDI-TOF-MS), UV-vis spectroscopy, fluorescence spectroscopy, and cyclic voltammetry. Electrochemical results show two successive one-electron reversible redox waves. The surface concentration of the ruthenium porphyrin molecules is 3.44 x 10 (-8) mol cm (-2). Optical results indicate that the immobilization of ruthenium porphyrin enhances the light absorption of SWCNTs-Si surfaces in the visible light region. Moreover mixed assembly of ferrocene/porphyrin onto carbon nanotube arrays has been achieved by altering the ratio of two redox-active species in the deposition solution. These results suggest the ruthenium porphyrin modified electrodes are excellent candidates for molecular memory devices and light harvesting antennae.  相似文献   

19.
Electronically coupled porphyrin arrays are suitable for artificial light harvesting antenna in light of a large absorption cross-section and fast excitation energy transfer (EET). Along this line, an artificial energy transfer model system has been synthesized, comprising of an energy donating meso-meso linked Zn(II) porphyrin array and an energy accepting 5,15-bisphenylethynylated Zn(II) porphyrin linked via a 1,4-phenylene spacer. This includes an increasing number of porphyrins in the meso-meso linked Zn(II) porphyrin array, 1, 2, 3, 6, 12, and 24 (Z1A, Z2A, Z3A, Z6A, Z12A, and Z24A). The intramolecular singlet-singlet EET processes have been examined by means of the steady-state and time-resolved spectroscopic techniques. The steady-state fluorescence comes only from the acceptor moiety in Z1A-Z12A, indicating nearly the quantitative EET. In Z24A that has a molecular length of ca. 217 A, the fluorescence comes largely from the acceptor moiety but partly from the long donor array, indicating that the intramolecular EET is not quantitative. The transient absorption spectroscopy has provided the EET rates in real time scale: (2.5 ps)(-1) for Z1A, (3.3 ps)(-1) for Z2A, (5.5 ps)(-1) for Z3A, (21 ps)(-1) for Z6A, (63 ps)(-1) for Z12A, and (108 ps)(-1) for Z24A. These results have been well explained by a revised F?rster equation (Sumi formula), which takes into account an exciton extending coherently over several porphyrin pigments in the donor array, whose length is not much shorter than the average donor-acceptor distance. Advantages of such strongly coupled porphyrin arrays in light harvesting and transmission are emphasized in terms of fast EET and a large absorption cross-section for incident light.  相似文献   

20.
A set of twelve porphyrin dimers has been prepared to give information on how the type of connectivity between a porphyrin core and a bridge can influence the interporphyrin electronic interaction. The new porphyrin systems are substituted directly at the meso position with an oligothiophene chain tethered either with a single C-C sigma bond, a trans ethylenyl group, or a acetylenyl group. The compounds are easily obtained by palladium-catalyzed cross-coupling reactions (Stille, Heck, and Sonogashira) between 5-iodo-10,15,20-(3,5-ditert-butylphenyl)porphyrin and the appropriate oligothiophene derivative. This synthetic approach is straightforward and very effective for preparing oligothiophene-based prophyrin systems. The absorption spectra and the fluorescence properties of the dimers demonstrated the crucial importance of the characteristics of the chemical bond used to connect the bridge to the porphyrin unit. The magnitude of the electronic communication can thus be significantly modulated by altering the type of bond connectivity used to link the chromophore to the bridge. The present work shows that an oligothiophene spacer is a viable class of linker for connecting porphyrins, and that a quaterthiophene appended with ethynyl linkages affords a high electronic interaction over a distance as large as 28 A. A detailed computational study of these dimers has clarified the conditions needed for a conjugated system to behave as a molecular wire. These conditions are full planarity of the molecule and proper energy matching between the frontier orbitals of the bridge and the porphyrin. Intermolecular energy transfer in asymmetrical dyads composed of a zinc porphyrin and a freebase porphyrin has been studied by fluorescence spectroscopy. In all systems, this process is more than 98% efficient, and its rate constant decreases steadily in the order 4ZH > 1ZH > 3ZH approximately 2ZH. Thus, the largest rate (kEnT = 1.2 x 10(11) s-1) was found in the dyad linked with bisethynyl quaterthiophene, which represents the longest bridge within the series. These results clearly demonstrate that strong communication and also efficient photoinduced processes can be promoted over a large distance if the electronic structure of the molecular connector is appropriately chosen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号