首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion-exchange with different cations (Na+, NH4 +, Li+, Ba2+ and Fe3+) was performed in binderless 13X zeolite pellets. Original and cation-exchanged samples were characterized by thermogravimetric analysis coupled with mass spectrometry (inert atmosphere), X-ray powder diffraction and N2 adsorption/desorption isotherms at 77 K. Despite the presence of other cations than Na (as revealed in TG-MS), crystalline structure and textural properties were not significantly altered upon ion-exchange. Single component equilibrium adsorption isotherms of carbon dioxide (CO2) and methane (CH4) were measured for all samples up to 10 bar at 298 and 348 K using a magnetic suspension balance. All of these isotherms are type Ia and maximum adsorption capacities decrease in the order Li > Na > NH4–Ba > Fe for CO2 and NH4–Na > Li > Ba for CH4. In addition to that, equilibrium adsorption data were measured for CO2/CH4 mixtures for representative compositions of biogas (50 % each gas, in vol.) and natural gas (30 %/70 %, in vol.) in order to assess CO2 selectivity in such scenarios. The application of the Extended Sips Model for samples BaX and NaX led to an overall better agreement with experimental data of binary gas adsorption as compared to the Extended Langmuir Model. Fresh sample LiX show promise to be a better adsorption than NaX for pressure swing separation (CO2/CH4), due to its higher working capacity, selectivity and lower adsorption enthalpy. Nevertheless, cation stability for both this samples and NH4X should be further investigated.  相似文献   

2.
Summary High resolution TG coupled to a gas evolution mass spectrometer has been used to study the thermal properties of a chromium based series of Ni/Cu hydrotalcites of formulae NixCu6-xCr2(OH)16(CO3)×4H2O where x varied from 6 to 0. The effect of increased Cu composition results in the increase of the endotherms and mass loss steps to higher temperatures. Evolved gas mass spectrometry shows that water is lost in a number of steps and that the interlayer carbonate anion is lost simultaneously with hydroxyl units. Differential scanning calorimetry was used to determine the heat flow steps for the thermal decomposition of the synthetic hydrotalcites. Hydrotalcites in which M2+ consist of Cu, Ni or Co form important precursors for mixed metal-oxide catalysts. The application of these mixed metal oxides is in the wet catalytic oxidation of low concentrations of retractable organics in water. Therefore, the thermal behaviour of synthetic hydrotalcites, NixCu6-xCr2(OH)16CO3×nH2O was studied by thermal analysis techniques in order to determine the correct temperatures for the synthesis of the mixed metal oxides.  相似文献   

3.
Biodiesel containing almost no glycerol has been produced by coupling reaction carried out over K2CO3 supported by calcium oxide as solid base catalysts. The solid base catalysts synthesized by wet impregnation exhibit an exceedingly high activity in biodiesel production. It was found that the reaction time required for the highest yield of biodiesel, 99.2%, can be shortened to 30 min over K2CO3/Al2O3 under the optimum reaction conditions: 8: 1: 1 molar ratio of methanol/DMC/oil, 30 wt % K2CO3/Al2O3 catalyst, and 65°C reaction temperature. Solid basic catalysts examined in the study were characterized by BET surface area, XRD, CO2-TPD, and SEM techniques. The strong interaction between K2CO3 and the support yields a new basic active site, which can be probably responsible for the high activity of K2CO3/Al2O3.  相似文献   

4.
The effect of the microstructure of titanium dioxide on the structure, thermal stability, and catalytic properties of supported CuO/TiO2 and CuO/(CeO2-TiO2) catalysts in CO oxidation was studied. The formation of a nanocrystalline structure was found in the CuO/TiO2 catalysts calcined at 500°C. This nanocrystalline structure consisted of aggregated fine anatase particles about 10 nm in size and interblock boundaries between them, in which Cu2+ ions were stabilized. Heat treatment of this catalyst at 700°C led to a change in its microstructure with the formation of fine CuO particles 2.5–3 nm in size, which were strongly bound to the surface of TiO2 (anatase) with a regular well-ordered crystal structure. In the CuO/(CeO2-TiO2) catalysts, the nanocrystalline structure of anatase was thermally more stable than in the CuO/TiO2 catalyst, and it persisted up to 700°C. The study of the catalytic properties of the resulting catalysts showed that the CuO/(CeO2-TiO2) catalysts with the nanocrystalline structure of anatase were characterized by the high-est activity in CO oxidation to CO2.  相似文献   

5.
Be2(OH)2CO3 solubilities at 25°C in 0.7 M NaClO4 solutions containing variable NaHCO3 and Na2CO3 concentrations has been experimentally determined. The solubilities increase with increasing carbonate alkalinity. The results of the experiments do not contradict the suggestion that the mixed hydroxocarbonate complex Be2(OH)2CO 3 2? is the major beryllium solute species. At fluoride concentrations higher than 250 μmol/L, the Be2(OH)2CO3 solubilities noticeably increase as a result of the formation of beryllium fluoride complexes.  相似文献   

6.
On the basis of consideration of dissociation, hydration, association, and ligand exchange, the assignment of absorption bands in the electronic spectra of aqueous solutions of the Na4[UO2(O2)CO3)2] complex has been performed. It has been demonstrated that the absorption in the range 190–400 nm is caused by the oxygen atoms of the O22- and CO32- groups and hydration water molecules of dissociated and neutral complex species Na3[UO2(O2)(CO3)2], Na2[UO2(O2)(CO3)2]2–, and Na4[UO2(O2)(CO3)2].  相似文献   

7.
The profiles of reactions leading to pyrrole anion N-adducts with CO2 and CS2 have been studied by the ab initio (RHF/6-31+G*, MP2/6-31+G*) and density functional (B3LYP/6-31+G*) methods. Addition of the pyrrole anion to the carbon disulfide molecule is accompanied by the appearance of a minimum corresponding to a pre-reaction complex. The transformation of the complex to the N-pyrrolyldithiocarboxylate anion occurs via a low activation barrier, which is due to repolarization of the C=S bonds. The profile of the reaction leading to the pyrrole anion N-adduct with CO2 does not contain any intermediate stationary points throughout the whole route from reagents to products.Original Russian Text Copyright © 2004 by V. B. Kobychev, N. M. Vitkovskaya, I. L. Zaitseva, and B. A. Trofimov__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 6, pp. 990–993, November–December, 2004.  相似文献   

8.
Polyethylenimine (PEI) and titanium dioxide nanoparticles (nano-TiO2) functionalized poly- HIPE beads were synthesized by suspension polymerization of styrene/divinylbenzene high internal phase emulsion (HIPE) containing PEI and nano-TiO2 particles in inner phase. The products are uniform and spherical beads with average diameter of 1 mm. Characterization results showed good thermal stability and desired mechanical strength. CO2 adsorption tests were performed with CO2/H2O/N2 (1 : 1 : 8) gas mixture. Nano-TiO2 particles distinctly improved the CO2 adsorption performance of the polyHIPE beads, resulting in enhanced CO2 adsorption capacity and fast adsorption/desorption kinetics. Besides, the functionalized polyHIPE beads exhibited remarkable cycle stability.  相似文献   

9.
Thin films of La2O3 were deposited onto glass substrates by ultrasonic spray pyrolysis. Their structural and morphological properties were characterized by X-ray diffraction, Fourier transform Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photo-electron spectroscopy, Brunauer-Emmett-Teller and optical absorption techniques. The sensor displays superior CO2 gas sensing performance at a low operating temperature of 498 K. The signal change on exposure to 300 ppm of CO2 is about 75%, and the signal only drops to 91% after 30 days of operation.
Graphical abstract Schematic diagram of the CO2 gas sensing mechanism of an interconnected web-like La2O3 nanostructure in presence of 300 ppm of CO2 gas and at an operating temperature of 498 K.
  相似文献   

10.
Dry potassium-based sorbents were prepared by impregnation with potassium carbonate on supports such as activated carbon (AC), TiO2, Al2O3, MgO, CaO, SiO2 and various zeolites. The CO2 capture capacity and regeneration property of various sorbents were measured in the presence of H2O in a fixed bed reactor, during multiple cycles at various temperature conditions (CO2 absorption at 50–100 °C and regeneration at 130–400 °C). The KAlI30, KCaI30, and KMgI30 sorbents formed new structures such as KAl(CO3)2(OH)2, K2Ca(CO3)2, K2Mg(CO3)2, and K2Mg(CO3)2·4(H2O), which did not completely convert to the original K2CO3 phase at temperatures below 200 °C, during the CO2 absorption process in the presence of 9 vol.% H2O. In the case of KACI30, KTiI30, and KZrI30, only a KHCO3 crystal structure was formed during CO2 absorption. The formation of active species, K2CO3·1.5H2O, by the pretreatment with water vapor and the formation of the KHCO3 crystal structure after CO2 absorption are important factors for absorption and regeneration, respectively, even at low temperatures (130–150 °C). In particular, the KTiI30 sorbent showed excellent characteristics with respect to CO2 absorption and regeneration in that it satisfies the requirements of a large amount of CO2 absorption (87 mg CO2/g sorbent) without the pretreatment with water vapor, unlike KACI30, and a fast and complete regeneration at a low temperature condition (1 atm, 150 °C). In addition, the higher total CO2 capture capacity of KMgI30 (178.6 mg CO2/g sorbent) than that of the theoretical value (95 mg CO2/g sorbent) was explained through the contribution of the absorption ability of MgO support. In this review, we introduce the CO2 capture capacities and regeneration properties of several potassium-based sorbents, the changes in the physical properties of the sorbents before/after CO2 absorption, and the role of water vapor and its effects on CO2 absorption.  相似文献   

11.
This is the first study of the NaBO2-Na2CO3-Na2MoO4-Na2WO4 quaternary system by differential thermal analysis. Na2[MoO4(x)WO4(1 − x)] solid solutions in the quaternary system are found to not decompose.  相似文献   

12.
The stability of amine-functionalized silica sorbents prepared through the incipient wetness technique with primary, secondary, and tertiary amino organosilanes was investigated. The prepared sorbents were exposed to different gaseous streams including CO2/N2, dry CO2/air with varying concentration, and humid CO2/air mixtures to demonstrate the effect of the gas conditions on the CO2 adsorption capacity and the stability of the different amine structures. The primary and secondary amine-functionalized adsorbents exhibited CO2 sorption capacity, while tertiary amine adsorbent hardly adsorbed any CO2. The secondary amine adsorbent showed better stability than the primary amine sorbent in all the gas conditions, especially dry conditions. Deactivation species were evaluated using FT-IR spectra, and the presence of urea was confirmed to be the main deactivation product of the primary amine adsorbent under dry condition. Furthermore, it was found that the CO2 concentration can affect the CO2 sorption capacity as well as the extent of degradation of sorbents.  相似文献   

13.
This experimental study of phase equilibria in the K2SO4-K2CO3-H2O system at 385–500°C and pressures up to 100 MPa is directed to determine the sequence of phase transformations that generate heterogeneous supercritical fluids from the homogeneous one; the homogeneous supercritical region spreads into the ternary system from the K2SO4-H2O subsystem. We found that heterogenization of supercritical fluid upon addition of K2CO3 starts with l1=l2 critical phenomena in solid saturated solutions and is attended by amalgamation of the stable immiscibility region that spreads from the K2CO3-H2O system with the metastable immiscibility region that originates from the K2SO4-H2O system. Our experimental results and the topological analysis of phase equilibria at temperatures above the critical point of water gave us the full scenario of the phase behavior of the title ternary system in the regions of fluid equilibria, g=l and l1=l2 critical phenomena, and liquid-liquid phase separation in two-, three-, and four-phase equilibria.  相似文献   

14.
A H3PW12O40/ZrO2 catalyst for effective dimethyl carbonate (DMC) formation via methanol carbonation was prepared using the sol–gel method. X-ray photoelectron spectra showed that reactive and dominant (63%) W(VI) species, in WO3 or H2WO4, enhanced the catalytic performances of the supported ZrO2. The mesoporous structure of H3PW12O40/ZrO2 was identified by nitrogen adsorption–desorption isotherms. In particular, partial sintering of catalyst particles in the duration of methanol carbonation caused a decrease in the Brunauer–Emmett–Teller surface area of the catalyst from 39 to 19 m2/g. The strong acidity of H3PW12O40/ZrO2 was confirmed by the desorption peak observed at 415 °C in NH3 temperature-programmed desorption curve. At various reaction temperatures (T?=?110, 170, and 220 °C) and CO2/N2 volumetric flow rate ratios (CO2/N2?=?1/4, 1/7, and 1/9), the calculated catalytic performances showed that the optimal methanol conversion, DMC selectivity, and DMC yield were 4.45, 89.93, and 4.00%, respectively, when T?=?170 °C and CO2/N2?=?1/7. Furthermore, linear regression of the pseudo-first-order model and Arrhenius equation deduced the optimal rate constant (4.24?×?10?3 min?1) and activation energy (Ea?=?15.54 kJ/mol) at 170 °C with CO2/N2?=?1/7 which were favorable for DMC formation.  相似文献   

15.
In the present research, CO2 and SO2 binding ability of different oil shale ashes and the effect of pre-treatment (grinding, preceding calcination) of these ashes on their binding properties and kinetics was studied using thermogravimetric, SEM, X-ray, and energy dispersive X-ray analysis methods. It was shown that at 700 °C, 0.03–0.28 mmol of CO2 or 0.16–0.47 mmol of SO2 was bound by 100 mg of ash in 30 min. Pre-treatment conditions influenced remarkably binding parameters. Grinding decreased CO2 binding capacities, but enhanced SO2 binding in the case of fluidized bed ashes. Grinding of pulverized firing ashes increased binding parameters with both gases. Calcination at higher temperatures decreased binding parameters of both types of ashes with both gases studied. Clarification of this phenomenon was given. Kinetic analysis of the binding process was carried out, mechanism of the reactions and respective kinetic constants were determined. It was shown that the binding process with both gases was controlled by diffusion. Activation energies in the temperature interval of 500–700 °C for CO2 binding with circulating fluidized bed combustion ashes were in the range of 48–82 kJ mol−1, for SO2 binding 43–107 kJ mol−1. The effect of pre-treatment on the kinetic parameters was estimated.  相似文献   

16.
The time curves of full polarization resistance of Ni cermet electrode modified with CeO2 − δ additive were studied by means of impedance spectroscopy in binary gas mixtures x% H2 + (100 − x)% H2O, 10% CO + 90% CO2 and multicomponent gas mixtures H2 + CO2 + H2O + CO + Ar of various composition at the temperature of 900°C. The Ni cermet electrode degradation rate in binary gas mixtures H2 + H2O was shown to increase sharply at the partial water pressure over 45%. The Ni cermet electrode degradation rate in the mixture of 10% CO + 90% CO2 was significantly lower than that in 10% H2 + 90% H2O. The major changes in the electrode characteristics upon long exposure in working conditions were accounted for by changes in the high-frequency partial polarization resistance. In the course of long testing, the electrode microstructure was not significantly changed. In the presence of hydrogen-containing components (H2 and H2O), the carbon-containing components (CO and CO2) were shown to make an insignificant contribution to the current generation processes in Ni cermet electrode. It was suggested that strong degradation of Ni cermet electrode was caused by poisoning its reaction sites with strongly linked adsorption forms of water (hydroxyls) at the positive charge of electrode.  相似文献   

17.
The state of surface Pt atoms in the Pt/SO4/ZrO2/Al2O3 catalyst and the effect of the state of platinum on its adsorption and catalytic properties in the reaction of n-hexane isomerization were studied. The Pt-X/Al2O3 alumina-platinum catalysts modified with various halogens (X = Br, Cl, and F) and their mechanical mixtures with the SO4/ZrO2/Al2O3 superacid catalyst were used in this study. With the use of IR spectroscopy (COads), oxygen chemisorption, and oxygen-hydrogen titration, it was found that ionic platinum species were present on the reduced form of the catalysts. These species can adsorb to three hydrogen atoms per each surface platinum atom. The specific properties of ionic platinum manifested themselves in the formation of a hydride form of adsorbed hydrogen. It is believed that the catalytic activity and operational stability of the superacid system based on sulfated zirconium dioxide were due to the participation of ionic and metallic platinum in the activation of hydrogen for the reaction of n-hexane isomerization.  相似文献   

18.
As a base-promoted Kolbe–Schmitt carboxylation reaction, the mechanism of synthesis of salicylic acid derivatives from phenols with CO2 in the industry is still unclear, even up to now. In this paper, synthesis of 3,6-dichloro salicylic acid (3,6-DCSA) from 2,5-dichloro phenoxide and CO2 was investigated in the presence of K2CO3. We show the reaction can proceed by itself, but it goes at a slower rate as well as a lower yield, compared to the case with the addition of K2CO3. However, the yield of 3,6-DCSA is only minorly affected by the size of K2CO3, which cannot be explained from the view of catalytic effect. Therefore, K2CO3 may on one hand act as a catalyst for the activation of CO2 so that the reaction can be accelerated, while on the other hand, it also acts as a co-reactant in deprotonating the phenol formed by the side reaction to phenoxide, which is further converted to salicylate.  相似文献   

19.
Potassium-based sorbents using γ-Al2O3 or TiO2 as a support or an additive material have disadvantages in terms of their thermal stability and cyclic CO2 capture. To overcome the shortcomings of these sorbents, a novel potassium-based sorbent (KSnI30) using SnO2 was developed in this study. The KSnI30 sorbent formed only K2CO3 and SnO2 phases without any inactive alloy species even after calcination at high temperatures (500–700 °C), indicating the good thermal stability of the KSnI30 sorbent regardless of the calcination temperature. Furthermore, the KSnI30 sorbent has an excellent regeneration property (above 98 %), as well as high CO2 capture capacities (89–94 mg CO2/g sorbent). Its excellent regeneration property is due to the formation of a KHCO3 phase without by-products during CO2 sorption. These results of the present study demonstrate that the SnO2 shows promise as a new support or an additive material to replace TiO2 and γ-Al2O3 in the preparation of a regenerable potassium-based sorbent for post-combustion CO2 capture with good thermal stability and excellent regeneration property.  相似文献   

20.
Summary Heat effects and densities of bovine albumin solutions in Na-acetate buffer pH 4.2 at various NaCl, Li2SO4 and (NH4)2SO4 concentrations were determined by a LKB 10700-2 microcalorimeter and an Anton Paar 60/602 densimeter (25°C). The density measurements were made after 1 and 48 h of the dissolution of bovine albumin in the buffer. The correlations between the changes of the enthalpy of salting and apparent molar volumes vs. concentrations of salts were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号