首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A flow injection (FI) on-line solvent extraction system for electrothermal atomic absorption spectrometry (ETAAS) was developed with nickel as a model trace element. The nickel pyrrolidine-dithiocarbamate chelate was extracted on line into isobutyl methyl ketone, which was delivered into the FI system by a peristaltic pump equipped with poly(tetrafluoroethylene) tubing. The organic phase was separated from the aqueous phase by a novel gravity phase separator with a small conical cavity, and stored in a collector tube, from which 50 μl organic concentrate was introduced into the graphite tube by an air flow. ETAAS determination of the analyte was performed in parallel with the extraction process. An enrichment factor of 25 was obtained in comparison with 50 μl direct introduction while achieving a detection limit of 4 ng l−1 (3σ), and a precision of 1.5% relative standard deviation for 1.0 μg l−1 nickel (n = 11). The proposed method was successfully applied to the determination of nickel in body fluids and other biological samples.  相似文献   

2.
Lima EC  Brasil JL  Vaghetti JC 《Talanta》2003,60(1):103-113
Single noble metal permanent modifiers such as, Rh, Ir, and Ru, as well as mixed tungsten plus noble metal (W-Rh, W-Ru, W-Ir) permanent modifiers thermally deposited on the integrated platform of transversally heated graphite atomizer were employed for the determination of arsenic in sludges, soils, sediments, coals, ashes and waters by electrothermal atomic absorption spectrometry. Microwave digests of solid samples and water samples were employed for obtaining the analytical characteristics of the methods with different permanent modifiers. The performance of the modifiers for arsenic determination in the real samples depended strongly on the type of permanent modifier chosen. The single noble metal (Rh, Ir and Ru) permanent modifiers were suitable for the analyte determinations in simpler matrices such as waters (recoveries of certified values 95-105%), but the analyte recoveries of certified values in sludges, soils, sediments, coals, and ashes were always lower than 90%. On the other hand, for the determination of arsenic, using W-Rh, W-Ru, and W-Ir permanent modifiers presented recoveries of certified values within 95-105% for all the samples. Long-term stability curves obtained for the determination of arsenic in environmental samples with different permanent modifiers (Rh, Ir, Ru, W-Rh, W-Ir, W-Ru) showed that the improvement in the tube lifetime depends on the tungsten deposit onto the platform. The tungsten plus noble metal permanent modifier presents a tube lifetime of at least 35% longer when compared with single permanent modifier. The results for the determination of As employing different permanent modifiers in the samples were in agreement with the certified reference materials, since no statistical differences were found after applying the paired t-test at the 95% confidence level.  相似文献   

3.
Ruthenium (Ru), thermally deposited on a integrated platform graphite furnace, was investigated as a permanent modifier for the determination of Aluminum (Al) in blood serum and urine by electrothermal atomic absorption spectrometry (ETAAS). The platform was treated with 500 μg of Ru as previously described. The pyrolysis and atomization temperatures for each material were of 1300 and 2300 °C, for serum sample and of 1000 and 2400 °C, for urine. The characteristic mass were of 31 and 33 pg for Al in serum sample and urine, respectively (recommended of 31 pg for Al in nitric acid 0.2% (v/v)). For this reason, the calibration was made with aqueous solutions for both the samples. Calibration curves presented r of 0.99145 and 0.99991 for serum and urine, respectively. With the optimized temperatures, being analyzed eight spiked blood serum samples, the recovery was between 95.90 and 113.50%. Two certified urines samples were analyzed with good agreement between experimental and reference values. In both the samples the R.S.D. were <5% (n=3). The detection limit (k=3, n=10) was of 0.40 μg of Al per liter for both the samples. The absorption pulses obtained were symmetrical, with very low background and without interferences. The life time of the tube-platform was higher than 600 cycles of atomizations for both the urine and serum samples.  相似文献   

4.
A flow injection on-line sorption preconcentration electrothermal atomic absorption spectrometric system for fully automatic determination of lead in water was investigated. The discrete non-flow-through nature of ETAAS, the limited capacity of the graphite tube and the relatively large volume of the knotted reactor (KR) are obstacles to overcome for the on-line coupling of the KR sorption preconcentration system with ETAAS. A new FI manifold has been developed with the aim of reducing the eluate volume and minimizing dispersion. The lead diethyldithiocarbamate complex was adsorbed on the inner walls of a knotted reactor made of PTFE tubing (100 cm long, 0.5 mm i.d.). After that, an air flow was introduced to remove the residual solution from the KR and the eluate delivery tube, then the adsorbed analyte chelate was quantitatively eluted into a delivery tube with 50 μl of ethanol. An air flow was used to propel the eluent from the eluent loop through the reactor and to introduce all the ethanolic eluate onto the platform of the transversely heated graphite tube atomizer, which was preheated to 80°C. With the use of the new FI manifold, the consumption of eluent was greatly reduced and dispersion was minimized. The adsorption efficiency was 58%, and the enhancement factor was 142 in the concentration range 0.01–0.05 μg l−1 Pb at a sample loading rate of 6.8 ml min−1 with 60 s preconcentration time. For the range 0.1–2.0 μg l−1 of Pb a loading rate of 3.0 ml min−1 and 30 s preconcentration time were chosen, resulting in an adsorption efficiency of 42% and an enhancement factor of 21, respectively. A detection limit (3σ) of 2.2 ng l−1 of lead was obtained using a sample loading rate of 6.8 ml min−1 and 60 s preconcentration. The relative standard deviation of the entire procedure was 4.9% at the 0.01 μg l−1 Pb level with a loading rate of 6.8 ml min−1 and 60 s preconcentration, and 2.9% at the 0.5 μg l−1 Pb level with a 3.0 ml min−1 loading rate and 30 s preconcentration. Efficient washing of the matrix from the reactor was critical, requiring the use of the standard addition method for seawater samples. The analytical results obtained for seawater and river water standard reference materials were in good agreement with the certified values.  相似文献   

5.
A solid sampling electrothermal atomic absorption spectrometry method for direct determination of trace silicon in biological materials was developed and applied to analysis of pork liver, bovine liver SRM 1577b and pure cellulose. The organic matrix was destroyed and expelled from the furnace in the pyrolysis stage involving a step-wise increasing the temperature from 160 °C to 1200 °C. The mixed Pd/Mg(NO3)2 modifier has proved to be the optimum one with respect to the achievement of maximum sensitivity, elimination of the effect of the remaining inorganic substances and the possibility of using calibration curves measured with aqueous standard solutions for quantification. For the maximum applicable sample amount of 6 mg, the limit of detection was found to be 30 ng g− 1. The results were compared with those obtained by different spectrometric methods involving sample digestion, by electrothermal atomic absorption spectrometry using slurry sampling, by wavelength dispersive X-ray fluorescence spectrometry and by radiochemical neutron activation analysis. The method seems to be a promising one for analysis of biological materials containing no significant fraction of silicon in form of not naturally occurring volatile organosilicon compounds. The still incessant serious limitations and uncertainties in the determination of trace silicon in solid biological materials are discussed.  相似文献   

6.
提出了以732强酸型阳离子树脂作填充材料,流动注射在线离子交换预富集火焰原子吸收光谱法测定水样中微量锰的分析方法。优化了各项化学条件和流路参数等,考察了共存离子的干扰。富集倍数可达24倍,分析速度为15~20样/h,检出限为2.0ng/mL,相对标准偏差为2.8%(n=15)。对雨水加标回收,回收率为97%~103%。  相似文献   

7.
A solvent impregnated hollow fibre (SIHF) module has been developed for the preconcentration of lead by using bis(2-ethylhexyl) phosphoric acid (DEHPA) dissolved in kerosene as extractant. The module has been designed for an on-line determination of trace amounts of lead(II) at mg l−1 (ppm) level by flame atomic absorption spectrometry (FAAS).

The SIHF system is based on the metal liquid–liquid distribution between aqueous solutions of different acidity and the mentioned organic solution. The highest enrichment factor of Pb(II) was determined at pH=4.0 using a formic acid/formiate buffer solution.

Preconcentration experiments were carried out at low lead(II) concentration (mg l−1 level) by using the SIHF module. This study includes the influence of hydrodynamic and chemical conditions on the loading and elution of Pb(II) on the SIHF, i.e., flow rate through the fibres, acidity of the eluent (as nitric acid concentration) and the chemical nature of the acid used in the elution. Breakthrough curves were determined for different sampling flow rates, 0.54 ml min−1 was selected to minimise the loading volume of Pb(II) sample. 0.1 M nitric acid was chosen as eluent solution, and perchloric acid also shows appropriate elution characteristics. The degree of concentration obtained for Pb(II) are of 10 fold the original concentration. The quantification limit for Pb(II) achieved with this preconcentration system is 0.17 mg l−1.

The results obtained indicate that the SIHF system can be applied for on-line determination of trace amounts of lead(II) by FAAS.  相似文献   


8.
A fully automated procedure for the determination of ng l−1 amounts of lead has been developed using flow injection (FI) online column preconcentration coupled with electrothermal atomic absorption spectrometry (ETAAS). The proposed FI manifold and its operation make possible the introduction of the total eluate volume into the graphite atomizer, avoiding the necessity for optimization of subsampling the eluate. The interference of other heavy metal ions due to competition for active sites of the sorbent is overcome using a highly selective macrocycle immobilized on silica gel (Pb-02). Lead is adsorbed on a microcolumn (50 μl) packed with Pb-02, and after washing the column with dilute nitric acid, air is introduced to remove all solution from the column and connecting tubing. The sorbed analyte is then eluted quantitatively into the graphite tube atomizer, preheated to 100°C, with 36 μl of ETDA solution (0.035 mol l−1, pH 10.5), propelled by air in order to minimize dispersion. The collection efficiency was 77% and with a sample loading flow rate of 3 ml min−1 and a 60 s preconcentration time, the enhancement factor was 77 and the throughput was 17 samples per hour. The relative standard deviation (n = 10) at the 300 ng l−1 level was 2.7%, and the detection limit (3σ) was 0.4 ng l−1. No interference from heavy metals was observed, but ions of Ba2+, Sr2+ and K+ were found to interfere when the concentration ratios of interferent to lead exceeded values of 2000, 20 000 and 200 000, respectively. Quantitative recovery of lead was achieved from sodium, magnesium, aluminum, lanthanum and heavy metal salt solutions. The high selectivity and sensitivity, combined with extremely low blank values, make the proposed technique particularly attractive for the analysis of high-purity reagents, semiconductors and other high-purity materials. Results are presented for the determination of lead in some high-purity reagents.  相似文献   

9.
A new approach for developing a cloud point extraction-electrothermal atomic absorption spectrometry has been described and used for determination of arsenic. The method is based on phase separation phenomenon of non-ionic surfactants in aqueous solutions. After reaction of As(V) with molybdate towards a yellow heteropoly acid complex in sulfuric acid medium and increasing the temperature to 55 °C, analytes are quantitatively extracted to the non-ionic surfactant-rich phase (Triton X-114) after centrifugation.To decrease the viscosity of the extract and to allow its pipetting by the autosampler, 100 μl methanol was added to the surfactant-rich phase. An amount of 20 μl of this solution plus 10 μl of 0.1% m/v Pd(NO3)2 were injected into the graphite tube and the analyte determined by electrothermal atomic absorption spectrometry.Total inorganic arsenic(III, V) was extracted similarly after oxidation of As(III) to As(V) with KMnO4. As(III) was calculated by difference. After optimization of the extraction condition and the instrumental parameters, a detection limit (3σB) of 0.01 μg l−1 with enrichment factor of 52.5 was achieved for only 10 ml of sample. The analytical curve was linear in the concentration range of 0.02-0.35 μg l−1. Relative standard deviations were lower than 5%. The method was successfully applied to the determination of As(III) and As(V) in tap water and total arsenic in biological samples (hair and nail).  相似文献   

10.
A direct solid sampling flame atomic absorption spectrometric procedure for trace determination of cadmium in biological samples has been developed. Test samples (0.05–2.00 mg) were ground and weighed into small polyethylene vials, which were connected to the device for solid sample introduction into a conventional air/acetylene flame. Test samples were carried as a dry aerosol to a quartz cell, placed between the burner and the optical path, which had a perpendicular entrance and a slit in the upper part. The atomic vapor generated in the flame produced a transient signal that was totally integrated within 1 s. The effect of operating conditions and the extent of grinding on the analytical signal were evaluated. Background signals were always low and a characteristic mass of 0.29 ng Cd was obtained. Calibration was performed using different masses of solid certified reference materials. Results obtained for certified and in-house reference materials were typically within the 95% confidence interval of the certified and/or reference value, and the precision, expressed as relative standard deviation, was between 3.8 and 6.7%. The proposed system is simple and it might be adapted to conventional atomic absorption spectrometers allowing the determination of Cd in more than 80 test samples per hour, excluding weighing.  相似文献   

11.
A new approach for a cloud point extraction electrothermal atomic absorption spectrometric method was used for determining bismuth. The aqueous analyte was acidified with sulfuric acid (pH 3.0-3.5). Triton X-114 was added as a surfactant and dithizone was used as a complexing agent.After phase separation at 50 °C based on the cloud point separation of the mixture, the surfactant-rich phase was diluted using tetrahydrofuran (THF). Twenty microliters of the enriched solution and 10 μl of 0.1% (w/v) Pd(NO3)2 as chemical modifier were dispersed into the graphite tube and the analyte determined by electrothermal atomic absorption spectrometry. After optimizing extraction conditions and instrumental parameters, a preconcentration factor of 196 was obtained for a sample of only 10 ml. The detection limit was 0.02 ng ml−1 and the analytical curve was linear for the concentration range of 0.04-0.60 ng ml−1. Relative standard deviations were <5%.The method was successfully applied for the extraction and determination of bismuth in tap water and biological samples (urine and hair).  相似文献   

12.
In this paper, two time-based flow injection (FI) separation pre-concentration systems coupled to graphite furnace atomic absorption spectrometry (GFAAS) for tellurium determination are studied and compared. The first alternative involves the pre-concentration of the analyte onto Dowex 1X8 employed as packaging material of a micro-column inserted in the flow system. The second set-up is based on the co-precipitation of tellurium with La(OH)3 followed by retention onto XAD resins. Both systems are compared in terms of limit of detection, linear range, RSD%, sample throughput, micro-columns lifetime and aptitude for fully automatic operation.  相似文献   

13.
Polychlorotrifluoroethylene (PCTFE) in the form of beads was applied, as packing material for flow injection on-line column preconcentration and separation systems coupled with flame atomic absorption spectrometry (FAAS). Its performance characteristics were evaluated for trace copper determination in environmental samples. The on-line formed complex of metal with diethyldithiophosphate (DDPA) was sorbed on the PCTFE surface. Isobutyl methyl ketone (IBMK) at a flow rate of 2.8 mL min−1 was used to elute the analyte complex directly into the nebulizer-burner system of spectrophotometer. The proposed sorbent material reveal, excellent chemical and mechanical resistance, fast adsorption kinetics permitting the use of high sample flow rates up to 15 mL min−1 without loss of retention efficiency. For copper determination, with 90 s preconcentration time the sample frequency was 30 h−1, the enhancement factor was 250, which could be further improved by increasing the loading (preconcentration) time. The detection limit (3s) was cL = 0.07 μg L−1, and the precision (R.S.D.) was 1.8%, at the 2.0 μg L−1 Cu(II) level. For lead determination, the detection limit was cL = 2.7 μg L−1, and the precision (R.S.D.) 2.2%, at the 40.0 μg L−1 Pb(II) level. The accuracy of the developed method was evaluated by analyzing certified reference materials and by recovery measurements on spiked natural water samples.  相似文献   

14.
The feasibility of Ru as a permanent modifier for the determination of Cd in biological samples treated with tetramethylammonium hydroxide (TMAH) by ET AAS was investigated. The tube treatment with Ru was carried out only once and lasted for about 300 atomization cycles. The pyrolysis and atomization temperatures, 750 °C and 1300 °C, respectively, were chosen from the temperature curves. The sample dissolution procedure was very simple: a sample aliquot was mixed with a small volume of a 25% m/v TMAH solution, the volume was made up to 50 ml and the mixture was kept at 60 °C for 1 h. Six certified biological reference materials were analyzed and the obtained Cd concentrations are within the 95% confidence interval of the certified values, proving the accuracy of the proposed procedure for a variety of biological samples. The calibration curve, with correlation coefficient higher than 0.99, was established for a working range up to10 μg l−1. The precision was good as demonstrated by relative standard deviations below 3%, except for one sample. The limit of detection (3σ) was 0.05 μg l−1 and the characteristic mass was 1.30 pg, obtained in the presence of the Ru modifier.  相似文献   

15.
A method using bi-directional electrostacking (BDES) in a flow system is presented for As preconcentration and speciation analysis. Some parameters such as electrostacking time and applied voltage, support buffers and their concentrations were investigated. Boric acid plus sodium hydroxide at 0.1 mol/l concentration was selected as support buffer to improve the pre-concentration factor (PF) for As(V). An analytical range from 2.0 to 50.0 μg l−1, and 0.35 μg l−1 as limit of detection, when applied 750 V for 20 min, were achieved. Under these conditions, a pre-concentration factor of 4.8 was obtained. The proposed method was applied to determine As(V) in mineral water and natural water samples (river, fountain and gold mine) from Ouro Preto city. Recoveries from 93.5 to 106.4% were achieved at 10 μg l−1 added As level (R.S.D.s between 3 and 7%). Potassium permanganate (10 mg l−1) was used for oxidising As species in order to determine total As, being established the concentration of As(III) from the difference between total As and As(V).  相似文献   

16.
A flow system was coupled to a graphite furnace with a platform coated with tungsten-rhodium permanent chemical modifier for in-line separation and preconcentration of copper by employing a minicolumn loaded with 1-(2-tiazolylazo)-2-naphthol (TAN) immobilized on C18-bonded silica fixed in the tip of the autosampler arm. Elution was made by sampling 35 μl of 0.50 mol l−1 HCl with further delivering into a coated platform. Remarkable improvements in both selectivity and sensitivity were observed. Copper(II) was effectively separated from solutions containing up to 20 g l−1 Na+; 10 g l−1 K+, Ca2+ and Mg2+; 1.0 g l−1 Fe3+ and Zn2+. For a sample flowing at 3.0 ml min−1 and a loading of 60 s, the detection limit was estimated as 5 ng l−1 Cu(II) at the 99.7% confidence level, and an enrichment factor of 33 was calculated. Coefficient of variation was estimated as 4% for a 0.30 μg l−1 copper solution (n=20). The W-Rh permanent chemical modifier was used to improve system stability, analytical performance and atomizer lifetime. More than 1500 firings were carried out with the same atomizer without significant variations in sensitivity and precision. On account of the reagent immobilization, its consumption was lower than 0.2 μg per determination. In addition, TAN purification was unnecessary.  相似文献   

17.
Burguera JL  Burguera M  Rondón C 《Talanta》2002,58(6):1167-1175
An on-line flow injection (FI) precipitation–dissolution system with microwave-assisted sample digestion has been developed for the electrothermal atomic absorption spectrometry (ETAAS) determination of trace or ultratrace amounts of molybdenum in human blood serum and whole blood samples. After the exposure of the sample to microwave radiation, the on-line precipitation of molybdenum was achieved by the merging-zone of a 0.5-ml plug of sample with a plug of potassium ferrocyanide, which were carried downstream with a solution of 0.5 mol l−1 of HNO3. The interfering effects of iron and copper were minimized by the introduction of a flow of a 5% (w/v) sodium potassium tartrate (for iron) and 2% (w/v) of thiourea (for copper and zinc) in a 5% (v/v) ammonia and 2% (v/v) ammonium chloride solution previous to the precipitation reaction. The reddish-brown precipitate of molybdenyl ferrocyanide was collected on the walls of a knotted reactor. The precipitate was dissolved with the introduction of 1 ml of a 3.0 mol l−1 NaOH solution and the best performance in terms of detection limit and precision was achieved when a sub-sample of 140 μl was collected in a capillary of a sampling arm assembly, to introduce 20 μl volumes into the atomizer by means of positive displacement with air through a time-based injector. A detection limit (3σ) of 0.1 μg Mo l−1 using an aqueous standard solution was obtained. The method is quantitative and is applied over the range 0.2–20.0 μg Mo l−1. The precision of the method evaluated by ten replicate analyses of aqueous standard solutions containing 0.5 and 1.0 μg Mo l−1 was 2.8 and 3.1% (relative standard deviation, RSD) (for n=5), respectively. Whereas, the precision evaluated by five replicate analysis of a serum and a whole blood sample were 3.3 and 3.8% RSD. An enrichment factor of ca. 3.5 was achieved with the introduction of 0.5 ml aqueous standard solutions at a sample flow rate of 1.0 ml min−1. Recoveries of spiked molybdenum in blood serum and whole blood were in the ranges 96–102 and 94–98%, respectively. The results obtained for two human whole blood certified reference materials were in good agreement with the indicative values.  相似文献   

18.
Coşkun N  Akman S 《Talanta》2004,64(2):496-500
Manganese in vitamin-minerals tablets was determined by solid sampling electrothermal atomic absorption spectrometry (SS-ETAAS) using three different calibration methods, namely calibration against aqueous standards, standard addition with aqueous standards on solid samples and calibration against solid certified standards. Samples were only finely ground and introduced directly into the furnace by means of solid autosampler system without any dissolving process. Effects of different calibration techniques, temperatures and heating rates of atomization and pyrolysis steps on the accuracy and precision of the analyte elements were investigated. After optimization of the experimental parameters, there is good agreement (at 95% confidence level) between the results obtained by solid sampling and those obtained by acid digestion of samples.  相似文献   

19.
Silk fibroin is a kind of polypeptide with functional amino acids in its structure. The electric charges in its molecular chains originating from the dissociation of acidic groups, i.e., hydroxyl, phenol and carboxyl, provide vast potentials for the retention of metal species of interest. In this study, the selective retention of Cu2+ with silk fibroin at pH 6.0 was investigated and a novel on-line procedure for separation/preconcentration of Cu2+ from complex sample matrices was thus developed by using a sequential injection system with an electrothermal atomic absorption spectrometry. A novel concept of enrichment index (EI), i.e., defined as enrichment factor (EF) obtained by consuming unity of sample volume (ml), was proposed for evaluating the enrichment efficiency of a flow-based preconcentration procedure. With a sampling volume of 900 μl, an EI of 30.3 (EF = 27.3) was achieved, which was much improved as compared to that of reported procedures. A detection limit of 8.0 ng l−1 was achieved within a linear range of 0.025-1.5 μg l−1 along with a precision of 2.2% R.S.D. at 0.5 μg l−1. The practical applicability of this procedure was validated by analyzing a certified reference material of riverine water (GBW08608) and a certified reference material of seawater (NASS-5) achieving satisfactory agreements between the certified and the obtained values. A spiking recovery was also performed by using a cave water sample.  相似文献   

20.
A simple and sensitive cloud point extraction method has been developed for the preconcentration of ultra-trace amounts of gold as a prior step to its determination by electrothermal atomic absorption spectrometry. It is based on the extraction of gold in hydrochloric acid medium using the non-ionic surfactant polyethyleneglycolmono-p-nonylphenylether (PONPE 7.5) without adding a chelating agent. The preconcentration of a 50 mL sample solution was thus enhanced by a factor of 200. The resulting calibration graph was linear in the range of 10–200 ng L−1 with a correlation coefficient of 0.9993. The limit of detection (3s) obtained under optimal conditions was 2.0 ng L−1. The relative standard deviation for 10 replicate determinations at a 100 ng L−1 Au level was 3.6%. The method was applied to the ultra-trace determination of gold in water and copper samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号