共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an investigation on the transport mechanism in autoclave/thermosyphon type enclosures. Without a baffle to separate the lower- from the upper-half, the flow structure and the transport mechanisms are the same in rectangular and cylindrical enclosures. Thus, the efficiency of the fluid exchange and heat transfer between the enclosure’s two halves due to wall-layers feeding structure ensures that the center cores have almost uniform temperature. However, when a baffle separates the two halves, the wall layers’ interactions are eliminated and two temperature zones are established. 相似文献
2.
Free convection from a tilted rectangular enclosure heated at the bottom wall and vented by uniform slots opening at different walls of the enclosure was experimentally investigated. The experiments were carried out to study the effects of venting arrangement, opening ratio and enclosure's tilt angle on the passive cooling of the enclosure. The experiments were carried out at a constant heat flux of 250 W/m2 and for enclosure tilt angles ranging from 0° to 180°. Three different venting arrangements of the air from the enclosure were studied: (1) top-venting arrangement, (2) side-venting arrangement, and (3) top and side-venting arrangement. Each venting arrangement was studied at different opening ratios of 1, 0.75, 0.5 and 0.25. The results showed that: (1) for top-venting arrangement, the Nusselt number decreases as the tilt angle of the enclosure increases, (2) for side-venting and side and top-venting arrangements, the Nusselt number increases as the tilt angle increases in the range [0°, 90°], then it decreases with the increase of the tilt angle, (3) for the three venting arrangements and at any tilt angle, the Nusselt number increases with the increase of the opening ratio of the slots, (4) for any tilt angle and at any opening ratio, the top and side-venting arrangement has the highest rate of cooling of the enclosure, and (5) for small tilt angles, the rate of cooling of the enclosure for top-venting arrangement was higher than that for side-venting arrangement, but with increasing tilt angle, the rate of cooling for side-venting arrangement becomes higher than that for top-venting arrangement. Correlations were developed for the three venting arrangements to predict the average Nusselt number of the enclosure in terms of the opening ratio and the enclosure tilt angle. 相似文献
3.
The heat transfer by natural convection in vertical and inclined rectangular enclosures with fins attached to the heated wall is numerically studied using the energy and Navier-Stokes equations with the Boussinesq approximation. The range of study covers 104Ra2×105,A=H/L=2.5 to ,B=l/L=0 to 1,C=h/L=0.25 to 2 andPr=0.72. The inclination angle from the vertical was from 0 to 60 degree. The variation of the local Nusselt numberNu
loc along the enclosure height and the average Nusselt numberNu as a function ofRa are computed. Streamlines and isotherms in the enclosure are produced. The results show thatB is an important parameter affecting the heat transfer through the cold wall of the enclosure. The heat transfer is reduced for decreasingC and it passes from a maximum for an inclination angle. The results show that the heat transfer can generally be reduced using appropriate geometrical parameters in comparison with a similar enclosure without fins.Die Wärmeübertragung bei freier Konvektion in vertikalen und geneigten rechtwinkligen Behältern mit Rippen an den beheizten Wänden wird unter Verwendung der Energie- und Navier-Stokes-Gleichungen sowie der Boussinesq-Approximation numerisch untersucht. Der Bereich der Studie liegt bei 104Ra2·105,A=H/L=2,5 bis ,B=l/L=0 bis 1,C=h/L=0,25 bis 2 undPr=0.72. Der Neigungswinkel der Wand liegt zwischen 0 und 60 Grad. Die Veränderung der lokalen Nusselt-Zahl entlang der Höhe der Behälterwände und die mittlere Nusselt-Zahl in Abhängigkeit derRa-Zahl werden berechnet. Strömungslinien und Isothermen werden im Behälter erzeugt. Die Ergebnisse zeigen, daßB ein wichtiger Parameter für die Wärmeübertragung an der nicht beheizten Wand des Behälters ist. Die übertragene Wärmemenge verringert sich mit abnehmendemC und durchschreitet ein Maximum für eine bestimmte Wandneigung. Die Ergebnisse zeigen, daß im Vergleich zu einer Anordnung ohne Rippen, die Wärmeübertragung bei geeigneten geometrischen Parametern allgemein reduziert werden kann. 相似文献
4.
Gurkan YesilozOrhan Aydin 《Experimental Thermal and Fluid Science》2011,35(6):1169-1176
Natural convective flow and heat transfer in an inclined quadrantal cavity is studied experimentally and numerically. The particle tracing method is used to visualize the fluid motion in the enclosure. Numerical solutions are obtained via a commercial CFD package, Fluent. The working fluid is distilled water. The effects of the inclination angle, ? and the Rayleigh number, Ra on fluid flow and heat transfer are investigated for the range of angle of inclination between 0° ? ? ? 360°, and Ra from 105 to 107. It is disclosed that heat transfer changes dramatically according to the inclination angle which affects convection currents inside, i.e. flow physics inside. A fairly good agreement is observed between the experimental and numerical results. 相似文献
5.
The natural convection heat transfer in inclined rectangular enclosures with perfectly conducting fins attached to the heated wall is numerically studied. The parameters governing this problem are the Rayleigh number (102≤Ra≤2×105), the aspect ratio of the enclosures (2.5≤A=H′/L′≤∞), the dimensionless lengths of the partitions (0≤B=?′/L′≤1), the aspect ratio of micro-cavities (A≤C=h′/L′≤0.33), the inclination angle (0≤φ≤60°) and the Prandtl number (Pr=0.72). The results indicate that the heat transfer through the cover is considerably affected by the presence of the fins. At low Rayleigh numbers, the heat transfer regime is dominated by conduction. When B≈0.75 and C≈0.33, the heat transfer through the cold wall decreases considerably. This trend is enhanced when the enclosure is inclined. Useful engineering correlations are derived for practical applications. 相似文献
6.
7.
This paper presents an experimental and numerical investigation on the natural convection flow in a cylindrical model hydrothermal
reactor. The flow is visualized non-intrusively and simulated with a conjugate computational model. Results show that the
flow structure consists of wall layers and core flows. In the lower half, the flows are steady due to the porous media. The
three-dimensional unsteady upper core flow is driven by the streams originated from the wall layer collision. The thermal
condition in the upper half core region is mainly determined by the total heat flow rate specified on the lower sidewall;
while the variations of porous media parameters, in the normal range for hydrothermal crystal growth process, have minor effects. 相似文献
8.
9.
10.
11.
This paper presents an investigation on the effects of superimposed temperature deviations as a control technique for the flows and mixing in lower half heated upper half cooled enclosures. Results show that the strength of the wall layer depends on the difference between the wall surface temperature and the fluid core temperature. The location of the head-on collision between a pair of upward/downward wall layers, which controls the mixing and fluid exchange between the two halves, is determined by the wall layer flow momentum strengths. Elevating/reducing the wall temperature by a superimposed temperature deviation is an effective control for the flow and mixing in such enclosures. Heat transfer analysis shows that the superimposed temperature deviations have minor effects on the total heat flow rate from the lower walls. Thus, this technique can be applied onto reactor vessels without modifying the reactor vessel configuration. 相似文献
12.
In this study, steady-state forced convection heat transfer and pressure drop characteristics in a horizontal rectangular cross-sectioned duct, baffles mounted on the bottom surface with different inclination angles were investigated experimentally in the Reynolds number range from 1 × 103 to 1 × 104. The study was performed under turbulent flow conditions. Effects of different baffle inclination angles on flow and heat transfer were studied. Results are also presented in terms of thermal enhancement factor. It is observed that increasing in baffle inclination angle enhances the heat transfer and causes an increase in pressure drop in the duct. 相似文献
13.
T.S. Lee 《International Journal of Heat and Fluid Flow》1984,5(1):29-36
Computational and experimental studies of the fluid motion and heat transfer characteristics of an incompressible fluid contained in a non-rectangular inclined enclosure are described in this paper. The enclosure has two 45° inclined side walls one of which was heated and the other cooled. The remaining two sides of the enclosure are parallel and insulated. The enclosure was rotated about the long axis in steps of 30° through 360°. Experiments were performed to study the effects of Rayleigh number, aspect ratios and orientation of the enclosure. The computational method uses a mesh transformation technique coupled with the introduction of ‘false transient’ parameters for the steady state solution of the problem. The experimental method uses smoke for flow visualization studies. With aspect ratios of 3 and 6, the results indicate that the heat transfer and fluid motion within the enclosure is a strong function of both the Rayleigh number and the cavity orientation angle. A minimum and a maximum mean Nusselt number occurred as the angle of inclination was increased from 0 to 360°. A transition in the mode of circulation occurred at the angle corresponding to the minimum or maximum rate of heat transfer. Stream lines and isotherms are presented for the most representative cases 相似文献
14.
Natural convection heat transfer in an inclined fin attached square enclosure is studied both experimentally and numerically.
Bottom wall of enclosure has higher temperature than that of top wall while vertical walls are adiabatic. Inclined fin has
also adiabatic boundary conditions. Numerical solutions have been done by writing a computer code in Fortran platform and
results are compared with Fluent commercial code and experimental method. Governing parameters are Rayleigh numbers (8.105 ≤ Ra ≤ 4 × 106) and inclination angle (30° ≤ and ≤ 120°). The temperature measurements are done by using thermocouples distributed uniformly
at the wall of the enclosure. Remarkably good agreement is obtained between the predicted results and experimental data. A
correlation is also developed including all effective parameters on heat transfer and fluid flow. It was observed that heat
transfer can be controlled by attaching an inclined fin onto wall. 相似文献
15.
The stability of a viscoelastic fluid in a densely packed horizontal porous layer heated from below is considered using an Oldroyd model. Critical Rayleigh number, wave number, and frequency for overstability are determined by applying the linear stability theory. It is shown that the critical Rayleigh number is invariant under all relevant boundary combinations. Also, it is found that the effect of elasticity of the fluid is to destabilize the system and that of porosity is to stabilize the same. The limiting case of very high Prandtl number and the degenerate case corresponding to the Maxwell model are analyzed in some detail. 相似文献
16.
A combined approach is proposed to describe the transformation of three-dimensional disturbances of the interface between two incompressible immiscible fluids of different densities contained in a channel with fixed rigid top and bottom. It is assumed that the wavelengths are moderately large, the amplitudes are small but finite, the top and the bottom can be gently sloping, and capillary effects are small. The system of equations derived is applicable for modeling disturbances simultaneously scattering in arbitrary horizontal directions. Some typical wave problems are numerically solved and the effect of governing parameters is shown. 相似文献
17.
A parametric study of droplet deformation through a microfluidic contraction: Shear thinning liquids
D.J.E. Harvie M.R. Davidson J.J. Cooper-White M. Rudman 《International Journal of Multiphase Flow》2007
Numerical simulations of a droplet passing through an axisymmetric microfluidic contraction are presented, focusing on systems where one of the two liquids present is shear thinning. The simulations are performed using a transient Volume of Fluid (VOF) algorithm. When the droplet is shear thinning and the surrounding phase Newtonian, droplets deform in a similar way to Newtonian droplets that have a viscosity equal to the average viscosity of the shear thinning fluid while it is within the contraction. When the surrounding phase is shear thinning and the droplet Newtonian, droplets deform in a similar way to droplets contained within a Newtonian liquid that has a viscosity that is lower than that of the droplet. In both cases the behaviour of the shear thinning fluid can be broadly described in terms of a ‘characteristic’ Newtonian viscosity: However, determining the exact value of this viscosity without performing a full shear thinning simulation is not possible. 相似文献
18.
Local heat transfer coefficients and temperature distributions within the fluid for air flow around a 180° square-sectioned bend have been measured. The ratio of bend radius to hydraulic diameter of the duct is 3.35:1 and the flow entering the bend is sensibly fully developed. Measurements of air and wall temperatures span a range of Reynolds numbers from 9.9 × 103 to 9.2 × 104 with the principal emphasis given to the case of Re ? 5.6 × 104. This Reynolds number and geometric configuration coincide with that of a companion LDA study carried out by Chang et al1 which provides detailed maps of the mean and turbulent velocity fields. The data show that by 45° into the bend the heat transfer coefficients on the inner convex wall of the bend drop markedly while those on the other walls increase. By 90° the ratio of the heat transfer coefficients at the mid positions of the concave and convex walls is more than 2:1. Nevertheless this ratio is less than would be anticipated from considering two-dimensional flow on weakly curved surfaces. There is a general consistency between the velocity and the temperatyre field data in the heated fluid 相似文献
19.
20.
《力学快报》2020,10(6):429-437
A standing wave oscillation in a closed basin, known as a seiche, could cause destruction when its period matches the period of another wave generated by external forces such as wind, quakes, or abrupt changes in atmospheric pressure. It is due to the resonance phenomena that allow waves to have higher amplitude and greater energy, resulting in damages around the area. One condition that might restrict the resonance from occurring is when the bottom friction is present. Therefore, a modified mathematical model based on the shallow water equations will be used in this paper to investigate resonance phenomena in closed basins and to analyze the effects of bottom friction on the phenomena. The study will be conducted for several closed basin shapes. The model will be solved analytically and numerically in order to determine the natural resonant period of the basin, which is the period that can generate a resonance. The computational scheme proposed to solve the model is developed using the staggered grid finite volume method. The numerical scheme will be validated by comparing its results with the analytical solutions. As a result of the comparison, a rather excellent compatibility between the two results is achieved. Furthermore, the impacts that the friction coefficient has on the resonance phenomena are evaluated. It is observed that in the prevention of resonances, the bottom friction provides the best performance in the rectangular type while functioning the least efficient in the triangular basin. In addition, non-linearity effect as one of other factors that provide wave restriction is also considered and studied to compare its effect with the bottom friction effect on preventing resonance. 相似文献