首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对多响应参数优化问题,考虑响应间相关性和可控因子波动的影响,提出了一种基于似无关回归的多元稳健损失函数方法。首先采用似无关回归对模型拟合和过程优化中的相关参数进行估计,更有效地利用响应间相关性信息;然后利用给定点处梯度信息来估计可控因子波动对过程稳健性的影响。算例表明,当响应间存在相关性时,与最小二乘方法相比,采用似无关回归拟合的响应曲面模型精度更高;与传统质量损失函数相比,在采用相同质量成本矩阵时,采用稳健损失函数方法得到的最优解处期望质量损失更小。  相似文献   

2.
考虑一般的分块半相依线性回归(SUR)模型及其相应的简约模型,给出简约模型下未知回归系数及其可估函数的协方差改进估计仍是分块SUR模型下相应参数的协方差改进估计的一个充要条件.  相似文献   

3.
刘金山  归庆明 《数学季刊》1999,14(4):19-26,
对于SUR回归方程系统,[1]提出回归系数的一种有偏估计βi^*。本文证明它是βi的线性估计类中的可容许估计,在一定条件下它优效于[2]提出的一种协方差改进估计βi^∧和OLS估计。本文还讨论了估计占优条件的假设检验问题。  相似文献   

4.
受实际问题研究的启发, 为减少模型偏差, 提出了一类半相依部分线性可加的半参数回归模型. 这类半相依模型中, 响应变量与 一部分解释变量之间的关系是线性的, 与另一部分解释变量之间的关系未知但具有可加结构, 各方程的误差之间是相关的. 将级 数逼近法、最小二乘法和同期相关的估计结合起来, 提出了用于估计模型参数分量的加权半参数最小二乘估计量(WSLSEs), 和用于估 计模型非参数分量的加权级数逼近估计量(WSEs). 证明了这些加权的估计量比相应的不加权的估计量渐近有效, 并导出了相应的渐近正态性. 另外, 还讨论了利用这些估计量的渐近性质来对模型的参数及非参数分量作统计推断. 用大量的模拟实验考察 了所提出的方法在有限样本情况下的表现, 并对美国的一个关于妇女工资问题的全国纵向调查(NLS)数据集进行了统计分析.  相似文献   

5.
归庆明 《数学研究》1994,27(2):76-81
对于一类相依线性回归系统,本文提出了一种泛岭改进估计,并讨论了这种估计及相应的两步估计的优良性质,获得了若干深入的结果.  相似文献   

6.
张莉莉 《大学数学》2011,27(2):119-122
考虑了SUR模型及其两个简约模型,给出简约模型下未知回归系数及其可估函数的协方差改进估计,并证明了在一定条件下该估计仍然是相应参数在原模型下的协方差改进估计.  相似文献   

7.
王石青  杨乔  刘法贵 《数学季刊》2006,21(3):397-401
Multivariate seemingly unrelated regression system is raised first and the two stage estimation and its covariance matrix are given. The results of the literatures[1-5] are extended in this paper.  相似文献   

8.
相依非线性回归系统中的附加信息Bayes拟似然   总被引:1,自引:0,他引:1  
林路 《数学学报》2002,45(6):1227-123
对多个相依统计模型的研究,现有成果主要集中在相依线性回归系统.本文则首次提出多个相依非线性回归系统中的附加信息Bayes拟似然,给出误差相关信息和先验信息在拟似然中的迭加方法,在较弱的条件下得到附加信息Bayes拟似然的一些性质,在Bayes风险准则下。讨论了其估计函数和参数估计的最优性,证明了附加信息Bayes拟似然的渐近 Bayes风险随着相依信息的增力。而逐步减少.  相似文献   

9.
林路 《应用数学》1998,11(4):110-113
本文定义了半相依非线性回归方程组中的近似得分函数和拟近似得分函数.这些函数利用了样本信息和附加信息,在均方误差准则下改进了独立得分函数和拟独立得分函数.  相似文献   

10.
The early work of Zellner on the multivariate Student-t linear model has been extended to Bayesian inference for linear models with dependent non-normal error terms, particularly through various papers by Osiewalski, Steel and coworkers. This article provides a full Bayesian analysis for a spherical linear model. The density generator of the spherical distribution is here allowed to depend both on the precision parameter φ and on the regression coefficients β. Another distinctive aspect of this paper is that proper priors for the precision parameter are discussed.The normal-chi-squared family of prior distributions is extended to a new class, which allows the posterior analysis to be carried out analytically. On the other hand, a direct joint modelling of the data vector and of the parameters leads to conjugate distributions for the regression and the precision parameters, both individually and jointly. It is shown that some model specifications lead to Bayes estimators that do not depend on the choice of the density generator, in agreement with previous results obtained in the literature under different assumptions. Finally, the distribution theory developed to tackle the main problem is useful on its own right.  相似文献   

11.
考虑具有奇异矩阵椭球等高分布误差的多元线性回归模型的贝叶斯统计推断,在非信息先验下得到了系数矩阵关于Hausdorff测度的后验边缘分布和未来观察值的预测分布,并得到了一类特殊奇异矩阵椭球等高分布下误差协方差矩阵的后验边缘分布.对于具有奇异矩阵正态分布误差的多元线性回归模型,在广义正态-逆Wishart共轭先验下得到了类似的后验边缘分布和预测分布结果.在上述两种先验分布下,回归系数矩阵的后验边缘分布和预测分布是双奇异矩阵t分布,这种分布具有关于Hausdorff测度的精确密度.结果表明,在非信息先验下,回归系数矩阵的后验边缘分布和未来观察值的预测分布在奇异矩阵椭球等高分布类中具有稳健性.  相似文献   

12.
本文给出了具有椭球等高分布误差的半参数回归模型中参数的Bayes估计.  相似文献   

13.
Bayesian multiperiod forecasts for ARX models   总被引:1,自引:0,他引:1  
Bayestian muliperiod forecasts for AR models with random independent exogenous variables under normal-gamma and normal-inverted Wishart prior assumptions are investigated. By suitably arranging the integration order of the model's parameters, at-density mixture approximation is analytically derived to provide an estimator of the posterior predictive density for any future observation. In particular, a suitablet-density is proposed by a convenient closed form. The precision of the discussed methods is examined by using some simulated data and one set of real data up to lead-six-ahead forecasts. It is found that the numerical results of the discussed methods are rather close. In particular, when sample sizes are sufficiently large, it is encouraging to apply a convenientt-density in practical usage. In fact, thist-density estimator asymptotically converges to the true density.This research was supported by the National Science Council, Republic of China under contract #NSC82-0208-M-008-086.  相似文献   

14.
n this paper, we propose composite quantile regression for functional linear model with dependent data, in which the errors are from a short-range dependent and strictly stationary linear process. The functional principal component analysis is employed to approximate the slope function and the functional predictive variable respectively to construct an estimator of the slope function, and the convergence rate of the estimator is obtained under some regularity conditions. Simulation studies and a real data analysis are presented for illustration of the performance of the proposed estimator.  相似文献   

15.
??n this paper, we propose composite quantile regression for functional linear model with dependent data, in which the errors are from a short-range dependent and strictly stationary linear process. The functional principal component analysis is employed to approximate the slope function and the functional predictive variable respectively to construct an estimator of the slope function, and the convergence rate of the estimator is obtained under some regularity conditions. Simulation studies and a real data analysis are presented for illustration of the performance of the proposed estimator.  相似文献   

16.
Within the framework of Bayesian inference, when observations are exchangeable and take values in a finite space X, a prior P is approximated (in the Prokhorov metric) with any precision by explicitly constructed mixtures of Dirichlet distributions. Likewise, the posteriors are approximated with some precision by the posteriors of these mixtures of Dirichlet distributions. Approximations in the uniform metric for distribution functions are also given. These results are applied to obtain a method for eliciting prior beliefs and to approximate both the predictive distribution (in the variational metric) and the posterior distribution function of d (in the Lévy metric), when is a random probability having distribution P.  相似文献   

17.
Logistic regression techniques can be used to restrict the conditional probabilities of a Bayesian network for discrete variables. More specifically, each variable of the network can be modeled through a logistic regression model, in which the parents of the variable define the covariates. When all main effects and interactions between the parent variables are incorporated as covariates, the conditional probabilities are estimated without restrictions, as in a traditional Bayesian network. By incorporating interaction terms up to a specific order only, the number of parameters can be drastically reduced. Furthermore, ordered logistic regression can be used when the categories of a variable are ordered, resulting in even more parsimonious models. Parameters are estimated by a modified junction tree algorithm. The approach is illustrated with the Alarm network.  相似文献   

18.
In this paper, we consider a set of individualM/M/1 queues in which variations in both arrival rates and service rates are partly explained by some covariates representing associated characteristics of individual queues. The random error that takes into account the remaining variation is assumed to follow a gamma distribution. Bayes and empirical Bayes procedures are suggested to make inferences concerning individual traffic intensity parameters that can be applied to several industrial queueing problems.  相似文献   

19.
We focus on the problem of simultaneous variable selection and estimation for nonlinear models based on modal regression (MR), when the number of coefficients diverges with sample size. With appropriate selection of the tuning parameters, the resulting estimator is shown to be consistent and to enjoy the oracle properties.  相似文献   

20.
Parameter estimation for two-dimensional point pattern data is difficult, because most of the available stochastic models have intractable likelihoods which usually depend on an unknown scaling factor. However, this problem can be bypassed using the pseudo-likelihood estimation method. Baddeley and Turner (1998) presented a numerical algorithm for computing approximated maximum pseudo-likelihood estimates for Gibbs point processes with exponential family likelihoods. We use their method and a new technique based on Voronoi polygons to evaluate the qua-drature points to present an intensive comparative simulation study which evaluates the performance of these two methods compared to the traditional approximation under varying circumstances. Two Gibbs point process models, the Strauss and saturation processes, have been used. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号