首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We calculate the important next-to-leading-order (NLO) contributions to the BKK * decays from the vertex corrections, the quark loops, and the magnetic penguins in the perturbative QCD (pQCD) factorization approach. The pQCD predictions for the CP-averaged branching ratios are , , and Br(B 0K + K *−+K K *+)≈1.3×10−7, which agree well with both the experimental upper limits and the predictions based on the QCD factorization approach. Furthermore, the CP violating asymmetries of the considered decay modes are also evaluated. The NLO pQCD predictions for and decays are and .  相似文献   

2.
The cavity ring down (CRD) technique presented here involves an optical cavity attached to a cryostat. The static cell and mirrors of the optical cavity are all inside a vacuum chamber at the same temperature of the cryostat. The temperature of the cell can be changed between 77 K and 298 K. An off-axis alignment of the laser beam into the cavity is used to increase the number of resonant modes inside the cavity and improve the signal to noise ratio of the absorption bands. To demonstrate the capabilities of the low temperature CRD cell, the absorption spectra of O2 are recorded at 90 K for the A (υ′=0←υ″=0) and γ (υ′=2←υ″=0) bands of the b1?g +? X3?g -b^{1}\sum_{g}^{ +}\leftarrow X^{3}\sum_{g}^{ -} transition using cavity ring down spectroscopy. The optical cavity performance was tested using two variations of the CRD technique. The A-band is measured using the phase-shift cavity ring down method and the γ-band using the pulsed-laser exponential-decay method. A comparison between experimental and simulated spectra of the O2 bands at 90 K confirms the molecular temperature measured by a sensor localized in the cell. Quantitative measurements of the individual rotational line intensities are made for the oxygen γ-band to confirm the temperature of the cell and calculate the vibrational band intensity. The application of this technique for laboratory studies of planetary atmospheres and the spectroscopy of molecular complexes is emphasized.  相似文献   

3.
Optical emission spectroscopy experiments are carried out by recording the radiation from the γ transitions of nitrogen monoxide in an air inductively coupled plasma in interaction with a water-cooled metallic flat plate at moderate pressure. The calibrated results allow to derive the vibrational and rotational temperatures of the NO(A 2 Σ +) excited state as well as its densities in the free jet and within the boundary layer by comparison with calculated spectra. Those results are compared with previous ones concerning temperatures and densities of the ground states of the majority species (N2, O2 and NO) that were obtained by laser techniques. As for the NO(X 2 Π) ground state, vibration and rotation of the excited state are found out of equilibrium. The NO(A 2 Σ +) excited state is found to be populated by an energy transfer from the metastable N2( A3\varSigma +uA^{3}\varSigma ^{+}_{u}). The steady state of the plasma allows using this property to derive N2( A3\varSigma +uA^{3}\varSigma ^{+}_{u}) densities and N2 electronic excitation temperatures. Close to the wall, a production of excited NO by a catalytic process is also considered involving N2( A3\varSigma +uA^{3}\varSigma ^{+}_{u}) as source of adsorbed atoms. The present results confirm that the kinetic temperature cannot be compared to the rotational temperature derived from optical emission spectroscopy in such plasma conditions.  相似文献   

4.
Sol–gel-derived SrTa2O6 thin films were fabricated at a low temperature of 500 °C. To improve their leakage current properties, additional UV/O3-assisted annealing was performed from room temperature to 290 °C. UV/O3 treatment at 290 °C gave a very low leakage current that was six orders of magnitude lower than that of an untreated thin film. During UV/O3-assisted annealing, Si and Ti ions diffused from the substrates into the SrTa2O6 thin films and occupied the Ta5+ sites, subsequently generating Si? and Ti?. At a heating temperature of 290 °C, large amounts of Ti ions diffused throughout the SrTa2O6 thin film. These Ti ions contributed to the generation of inactive combinations of $(\mathrm{Si}^{-}\mbox{--}\mathrm{V}_{\mathrm{o}}^{+})^{+}\mbox{--}\mathrm{Ti}^{-}$ and $(\mathrm{Ti}^{-}\mbox{--}\mathrm{V}_{\mathrm{o}}^{+})^{+}\mbox{--}\mathrm{Ti}^{-}$ , which greatly reduced oxygen vacancies (Vo). Thus, the leakage current was significantly reduced.  相似文献   

5.
The use of multi-mode absorption spectroscopy (MUMAS) to detect multiple transitions in the A-band b1Σg +-X3Σg - of molecular oxygen is reported. The modelling of MUMAS signatures and the procedure for fitting such model signatures to experimental data obtained using a multi-mode diode laser is described. The technique is shown to allow accurate and precise measurement of concentration, temperature over the range 300 to 500 K and of pressure over the range 0.2 to 1 bar. Extension of the technique to other ranges of temperature and pressure and to other species is discussed. PACS 42.62.Fi; 33.20.Kf  相似文献   

6.
The decay of the isotopes 255Rf, 251No and 247Fm produced in the reactions , and was investigated by means of α-γ spectroscopy. Previously observed γ transitions in coincidence with α decays of 255Rf were confirmed, their energies and line intensities were measured more precisely, and their multipolarities were determined as E1. In 251No a new isomeric state at E * > 1700keV with a half-life of ≈ 2μs was identified. The decay of 247Fm was measured more precisely. A partial level scheme of the daughter nucleus 243Cf could be established.  相似文献   

7.
Laser-Induced Breakdown Spectroscopy (LIBS) of DNA bases Guanine and Adenine was studied using a high-power CO2 pulsed laser (λ=10.591 μm, τ FWHM=64 ns and fluences ranging from 25 to 70 J/cm2). The strong emission of the adenine and guanine plasma, collected using a high-resolution spectrometer, at medium-vacuum conditions (4 Pa) and at 1 mm from the target, exhibits excited molecular bands of CN (B2 Σ +–X2 Σ +) and excited neutral H and ionized N+ and C+. The medium-weak emission is due to excited species C2+, C3+, N, O, O+, O2+ and molecular band systems of $\mathrm{C}_{2}(\mathrm{d}^{3}\varPi_{\mathrm{g}}\mbox{--}\mathrm{a}^{3}\varPi_{\mathrm{u}};\ \mathrm{D}^{1}\varSigma_{\mathrm{u}}^{+}\mbox{--}\mathrm{X}^{1}\varSigma_{\mathrm{g}}^{+})$ , OH(A2 Σ +–X2 Π), NH(A3 Π–X3 Σ ?), CH(A2 Π–X2 Π), $\mathrm{N}_{2}^{+}(\mathrm{B}^{2}\varSigma_{\mathrm{u}}^{+}\mbox{--} \mathrm{X}^{2}\varSigma_{\mathrm{g}}^{+})$ and N2(C3 Π u–B3 Π g). We focus our attention on the temporal evolution of different atomic/ionic and molecular species. The velocity distributions for various (different) species were obtained from time-of-flight (TOF) measurements. Intensities of some lines from C+ were used for determining electron temperature and their Stark-broadened profiles were employed to estimate the temporal evolution of electron density.  相似文献   

8.
The mineral inclusions of two orange glass tesserae from paleo-Christian mosaics were investigated in order to derive the melting temperature reached during their production (sourced from Padua and Vicenza, Veneto region, Italy). In particular, clinopyroxene crystals were studied by single-crystal X-ray diffraction and electron microprobe WDS analysis. The crystals show C2/c symmetry, typical of disordered Ca/Na and Mg/Al distributions indicating high-temperature of formation (>700°C). The cation site populations were obtained by combining results from the two experimental techniques enabled us to derive the following stoichiometric formula:
lM2[Ca0.819Na0.172Mn0.006K0.003]M1[Mg0.765Fe3+0.210   Cu0.015Ti0.006Zn0.006]T[Si1.933Al0.037Sn0.024]O6\begin{array}{l}{}^{M2}[\mathrm{Ca}_{0.819}\mathrm{Na}_{0.172}\mathrm{Mn}_{0.006}\mathrm{K}_{0.003}]{}^{M1}[\mathrm{Mg}_{0.765}\mathrm{Fe}^{3+}_{0.210}\\[3pt]\quad{}\mathrm{Cu}_{0.015}\mathrm{Ti}_{0.006}\mathrm{Zn}_{0.006}]{}^{T}[\mathrm{Si}_{1.933}\mathrm{Al}_{0.037}\mathrm{Sn}_{0.024}]\mathrm{O}_{6}\end{array}  相似文献   

9.
Ultrafast delocalization of hydrogen atoms in allene (CH2=C=CH2) induced by intense laser fields was investigated by the Coulomb explosion coincidence momentum imaging method. On the basis of the kinetic energy distributions of the fragment ions produced through the two three-body Coulomb explosion pathways, C3H43+ ? H+ + CH+ + C2H2+\mathrm{C}_{3}\mathrm{H}_{4}^{3+} \rightarrow \mathrm{H}^{+} + \mathrm{CH}^{+} + \mathrm{C}_{2}\mathrm{H}_{2}^{+} and C3H43+ ? H+ + C2H+ +CH2+\mathrm{C}_{3}\mathrm{H}_{4}^{3+} \rightarrow \mathrm{H}^{+} + \mathrm{C}_{2}\mathrm{H}^{+} +\mathrm{CH}_{2}^{+}, and the proton maps for both pathways, it was shown that the decomposition proceeds in a stepwise manner as well as in a concerted manner. The time scale of the hydrogen migration within an allene molecule was estimated to be ∼20 fs.  相似文献   

10.
In this article, we study the Λ c and Λ b baryons in the nuclear matter using the QCD sum rules, and obtain the in-medium masses M\varLambda c*=2.335 GeVM_{\varLambda _{c}}^{*}=2.335~\mathrm{GeV}, M\varLambda b*=5.678 GeVM_{\varLambda _{b}}^{*}=5.678~\mathrm{GeV}, the in-medium vector self-energies \varSigma \varLambda cv=34 MeV\varSigma ^{\varLambda _{c}}_{v}=34~\mathrm{MeV}, \varSigma \varLambda bv=32 MeV\varSigma ^{\varLambda _{b}}_{v}=32~\mathrm {MeV}, and the in-medium pole residues l\varLambda c*=0.021 GeV3\lambda_{\varLambda _{c}}^{*}=0.021~\mathrm{GeV}^{3}, l\varLambda b*=0.026 GeV3\lambda_{\varLambda _{b}}^{*}=0.026~\mathrm{GeV}^{3}. The mass-shifts are M\varLambda c*-M\varLambda c=51 MeVM_{\varLambda _{c}}^{*}-M_{\varLambda _{c}}=51~\mathrm{MeV} and M\varLambda b*-M\varLambda b=60 MeVM_{\varLambda _{b}}^{*}-M_{\varLambda _{b}}=60~\mathrm{MeV}, respectively.  相似文献   

11.
A spectroscopic study of ambient air plasma, initially at room temperature and pressures ranging from 32 to 101 kPa, produced by high-power transverse excitation atmospheric (TEA) CO2 laser (λ=9.621 and 10.591 μm; τ FWHM≈64 ns; power densities ranging from 0.29 to 6.31 GW cm−2) has been carried out in an attempt to clarify the processes involved in laser-induced breakdown (LIB) air plasma. The strong emission observed in the plasma region is mainly due to electronic relaxation of excited N, O and ionic fragments N+. The medium-weak emission is due to excited species O+, N2+, O2+, C, C+, C2+, H, Ar and molecular band systems of N 2+(_{2}^{+}( B 2\varSigma u+^{2}\varSigma _{\mathrm{u}}^{+} –X 2\varSigma g+)^{2}\varSigma _{\mathrm{g}}^{+}) , N2(C3 Π u–B3 Π g), N 2+(_{2}^{+}( D2 Π g–A2 Π u) and OH(A2 Σ +–X2 Π). Excitation temperatures of 23400±700 K and 26600±1400 K were estimated by means of N+ and O+ ionic lines, respectively. Electron number densities of the order of (0.5–2.4)×1017 cm−3 and (0.6–7.5)×1017 cm−3 were deduced from the Stark broadening of several ionic N+ and O+ lines, respectively. Estimates of vibrational and rotational temperatures of N 2+_{2}^{+} electronically excited species are reported. The characteristics of the spectral emission intensities from different species have been investigated as functions of the air pressure and laser irradiance. Optical breakdown threshold intensities in air at 10.591 μm have been measured.  相似文献   

12.
In this article, we assume that there exists a scalar hidden charm tetraquark state in the π + χ c1 invariant mass distribution, and we study its mass using the QCD sum rules. The numerical result M Z =(4.36±0.18) GeV is consistent with the mass of the Z(4250). The Z(4250) may be a tetraquark state, but other possibilities, such as a hadro-charmonium resonance and a molecular state, are not excluded.  相似文献   

13.
The minerals versiliaite and apuanite have been synthesised for the first time. The 57Fe Mössbauer spectra recorded at 298 and 4 K are reported. The results are indicative of a formulation for versiliaite as \(\left (\text {Fe}_{4}^{2+}\text {Fe}_{4}^{3+}\right )^{\text {oct}}\left [\text {Fe}_{4}^{3+}\text {Sb}_{12}^{3+}\right ]^{\text {tet}}\textit {O}_{32}\textit {S}_{2}\) and of apuanite as \(\left (\text {Fe}_{4}^{2+}\text {Fe}_{8}^{3+}\right )^{\text {oct}}\left [\text {Fe}_{8}^{3+}\text {Sb}_{16}^{3+}\right ]^{\text {tet}}\textit {O}_{48}\textit {S}_{\mathrm {4.}}\) The spectra recorded at low temperature are indicative of complex magnetic interactions. The results indicate the potential for the synthesis of further new structurally-related materials with different compositions and new low dimensional physical properties.  相似文献   

14.
Neutral and cationic Zn n O m clusters of various stoichiometry have been produced by nanosecond laser ablation of ZnO in vacuum and investigated by time-of-flight mass spectrometry. Particular attention was paid to the effect of laser wavelength (in the range from near-IR to UV) on cluster composition. Under 193-nm laser ablation, the charged clusters are essentially substoichiometric with ZnnOn-1+\mathrm{Zn}_{n}\mathrm{O}_{n-1}^{+} and ZnnOn-3+\mathrm{Zn}_{n}\mathrm{O}_{n-3}^{+} being the most abundant series. Both sub- and stoichiometric cationic clusters are generated in abundance at 532- and 1064-nm ablation whose composition depends on the cluster size. The reactivity of small stoichiometric ZnnOn+\mathrm{Zn}_{n}\mathrm{O}_{n}^{+} clusters (n<11) toward hydrogen is found to be high, while oxygen-deficient species are less reactive. The neutral plume particles are mainly stoichiometric with Zn4O4 tetramer being a magic cluster. It is suggested that the Zn4O4 loss is the dominant fragmentation channel of large zinc oxide clusters upon electron impact. Plume expansion conditions under ZnO ablation with visible and IR laser pulses are shown to be favorable for stoichiometric cluster formation.  相似文献   

15.
A few-body type computation is performed for a three-charge-particle collision with participation of a slow antiproton ${\bar{\rm{p}}}$ and a muonic muonium atom (true muonium), i.e. a bound state of two muons ${(\mu^{+}\mu^{-})}$ in its ground state. The total cross section of the following reaction ${\bar{\rm p}+(\mu^{+}\mu^{-}) \rightarrow \bar{\rm{H}}_{\mu} + \mu^{-}}$ , where muonic anti-hydrogen ${\bar{\rm{H}}_{\mu}=(\bar{\rm p}\mu^{+})}$ is a bound state of an antiproton and positive muon, is computed in the framework of a set of coupled two-component Faddeev-Hahn-type equation. A better known negative muon transfer low energy three-body reaction: ${{\rm t}^{+} + ({\rm d}^{+}\mu^{-})\rightarrow ({\rm t}^{+}\mu^{-}) + {\rm d}^{+}}$ is also computed as a test system. Here, t+ is triton and d+ is deuterium.  相似文献   

16.
We analysed the process of \(B_{c}^{+}{\to } D_{s}^{+}\overline {K}^{0^{\ast } }\) using QCD factorization (QCDF) and final-state interaction (FSI) effects. First, the \(B_{c}^{+}{\to } D_{s}^{+}\overline {K}^{0^{\ast } }\) decay is calculated using QCDF method. The value found by using the QCDF method is less than the experimental value. Then we considered FSI effect as a sizable correction where the intermediate state \(D^{+^{\ast } }\pi ^{0}\) mesons via the exchange of \(K^{0}(K^{0^{\ast } })\) are produced. To consider the amplitudes of this intermediate state, the QCDF approach was used. The experimental branching ratio of \(B_{c}^{+}{\to } D_{s}^{+}\overline {K}^{0^{\ast } }\) decay is less than 0.4×10?6 and our results are (0.21±0.04)×10?7 and (0.37±0.05)×10?6 from QCDF and FSI, respectively.  相似文献   

17.
We study the potential observation at the LHC of CP-violating effects in stop production and subsequent cascade decays, , , , within the Minimal Supersymmetric Standard Model. We study T-odd asymmetries based on triple products between the different decay products. There may be a large CP asymmetry at the parton level, but there is a significant dilution at the hadronic level after integrating over the parton distribution functions. Consequently, even for scenarios where large CP intrinsic asymmetries are expected, the measurable asymmetry is rather small. High luminosity and precise measurements of masses, branching ratios and CP asymmetries may enable measurements of the CP-violating parameters in cascade decays at the LHC.  相似文献   

18.
Some laser spectroscopy experiments carried out by the Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) collaboration to measure the single-photon transition frequencies of antiprotonic helium (\(\overline {p}\text {He}^{+}\equiv \overline {p}+\text {He}^{2+}+e^{-}\)) atoms are reviewed. The \(\overline {p}\text {He}^{+}\) were cooled to temperature T =?1.5–1.7 K by buffer-gas cooling in a cryogenic gas target, thus reducing the thermal Doppler width in the single-photon resonance lines. The antiproton-to-electron mass ratio was determined as \(M_{\overline {p}}/m_{e}=?1836.1526734(15)\) by comparisons with the results of three-body quantum electrodynamics calculations. This agreed with the known proton-to-electron mass ratio.  相似文献   

19.
We study the final problem for the nonlinear Schrödinger equation
$i{\partial }_{t}u+\frac{1}{2}\Delta u=\lambda|u|^{\frac{2}{n}}u,\quad (t,x)\in {\mathbf{R}}\times \mathbf{R}^{n},$
where\(\lambda \in{\bf R},n=1,2,3\). If the final data\(u_{+}\in {\bf H}^{0,\alpha }=\left\{ \phi \in {\bf L}^{2}:\left( 1+\left\vert x\right\vert \right) ^{\alpha }\phi \in {\bf L}^{2}\right\} \) with\(\frac{ n}{2} < \alpha < \min \left( n,2,1+\frac{2}{n}\right) \) and the norm\(\Vert \widehat{u_{+}}\Vert _{{\bf L}^{\infty }}\) is sufficiently small, then we prove the existence of the wave operator in L 2. We also construct the modified scattering operator from H 0,α to H 0,δ with\(\frac{n}{2} < \delta < \alpha\).
  相似文献   

20.
Spectroscopic properties of the flashlamp-pumped Nd 3+:YAG laser as a function of input energy were studied over the range of 18–75 J. The spectral widths and shifts of quasi-three-level and four-level inter-Stark emissions within the respective intermanifold transitions of \(^{\mathrm {4}}\mathrm {F}_{\mathrm {3/2}}\to ^{\mathrm {4}}{\kern -2.7pt}\mathrm {I}_{\mathrm {9/2}}\) and \(^{\mathrm {4}}\mathrm {F}_{\mathrm {3/2}}\to ^{\mathrm {4}}{\kern -2.7pt}\mathrm {I}_{\mathrm {11/2}}\) were investigated. The emission lines of \(^{\mathrm {4}}\mathrm {F}_{\mathrm {3/2}}\to ^{\mathrm {4}}{\kern -2.7pt}\mathrm {I}_{\mathrm {9/2}}\) shifted towards longer wavelength (red shift) and broadened, while the positions and linewidths of the \(^{\mathrm {4}}\mathrm {F}_{\mathrm {3/2}}\to ^{\mathrm {4}}{\kern -3.5pt}\mathrm {I}_{\mathrm {11/2}}\) transition lines remained constant by increasing the pumping energy. This is attributed to the thermal population as well as one-phonon and multiphonon emission processes in the ground state. This phenomenon degrades the output performance of the lasers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号