首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neutral form of the unnatural amino acid phenylglycine was vaporized by laser ablation, and the presence of two conformers was detected in a supersonic expansion by Fourier transform microwave spectroscopy. Both conformers were unequivocally identified by comparison of their experimental rotational and quadrupole coupling constants with those calculated ab initio. The most stable conformer is stabilized by intramolecular hydrogen bonds N-H...O=C, N-H...pi (with the closest C-C bond in the aromatic ring), and a cis-COOH interaction. The other conformer exhibits a O-H...N hydrogen bond between the hydrogen atom of the hydroxyl group and the lone pair at the nitrogen atom.  相似文献   

2.
A comprehensive conformational analysis of isolated 2'-deoxyuridine (dU), a minor DNA nucleoside, has been performed by means of ab initio calculations at the MP2/6-311++G (d,p)//DFT B3LYP/6-31G (d,p) level of theory. At 298.15 and 420 K, all 94 allowed conformers of dU are within 8.96 and 7.91 kcal/mol Gibbs energy ranges, respectively. Syn orientation for the base and South (S) conformers for the sugar dominate at 298.15 K: syn/anti=62.3%:37.7% and S/N=77.2%:22.8%. At 420 K in the majority of conformers, the base is anti oriented and the population of North (N) sugars increases: syn/anti=39.3%:60.7% and S/N=63.0%:37.0%. Values of all conformational parameters and correlations between them, as well as their correlations with valence bonds, and also correlations between valence bonds and angles were estimated. In general, 14 types of intramolecular H-bonds were detected (1-3 H-bonds per conformer, the total number 175), namely, C1'H...O2 (16 H-bonds), C2'H1...O5' (9), C2'H2...O2 (21), C3'H...O2 (21), C5'H1...O2 (14), C5'H2...O2 (11), C6H...O4' (37), C6H...O5' (22), C3'H...HC6 (4), O5'H...HC6 (2), O3'H...O5' (5), O5'H...O4' (1), O5'H...O3' (4), and O5'H...O2 (8). Geometric, vibrational, structural-topological, and energetic features of the OH...O intramolecular H-bonds in dU conformers were determined. The close similarity between energetic and geometric characteristics of dU and thymidine DNA-like conformers in anti and relevant syn conformations and their transition states of the anti-->syn interconversion implies that mismatch DNA glycosylase discriminates between the two nucleosides, mainly because of the difference in the shapes of their bases. Convolution of calculated IR spectra of all the dU conformers within the limits 3400-3700 cm(-1) appears to be consistent with its low-temperature matrix IR spectrum (Ivanov et al. Spectrochim. Acta, Part A 2003, 59, 1959), wavenumber discrepancy not exceeding 1%. It was concluded that, for a reliable reproduction of the experimental spectrum, the whole set of conformers should be taken into consideration. The suggested method makes reconstruction of the isolated nucleoside IR spectrum at a physiological interval of temperature reasonably possible.  相似文献   

3.
The low-lying conformers of N-/O-methylglycine are studied by ab initio calculations at the B3LYP, MP3, and MP4(SDQ) levels of theory with the aug-cc-pVDZ basis set. The conformers having the intramolecular hydrogen bonds N-H...O=C or O-H...N are more stable than the others. Vertical ionization energies for the valence molecular orbitals of each conformer predicted with the electron propagator theory in the partial third-order quasiparticle approximation are in good agreement with the experimental data available in the literatures. The relative energies of the conformers and comparison between the simulated and the experimental photoelectron spectra demonstrate that there are at least three and two conformers of N- and O-methylglycine, respectively, in the gas-phase experiments. The intramolecular hydrogen bonding O-H...N effects on the molecular electronic structures are discussed for the glycine methyl derivatives, on the basis of the ab initio electronic structure calculations, natural orbital bond, and atoms-in-molecules analyses. The intramolecular hydrogen bonding O-H...N interactions hardly affect the electronic structures of the O-NH2-CH2-C(=O)-O-CH3 and alpha-methylated NH2-CH2-C(CH3)OOH conformers, while the similar intramolecular interactions lead to the significantly lower-energy levels of the highest occupied molecular orbitals for the N-(CH3-NH-CH2-COOH) and beta-methylated (NH2-CH2-CH2-COOH) conformers.  相似文献   

4.
Bis(trifluoromethylsulfonylamino)methane in an inert medium exists as an equilibrium mixture of monomeric forms with various types of intramolecular hydrogen bonds, whose population depends on the polarity of the medium. The energetically most favorable form is a symmetrical form containing two N-H...O=S bonds. Less stable are the isomer with two N-H...F-C bonds and the unsymmetrical isomer with two different hydrogen bonds. N-[(Trifluoromethylsulfonyl)aminomethyl]acetamide contains one intramolecular intramolecular N-H...O=C hydrogen bond and preserves ability for self-association.  相似文献   

5.
The alpha-amino acids 4(S)-hydroxyproline and 4(R)-hydroxyproline have been studied under isolation conditions in gas phase using laser-ablation molecular-beam Fourier transform microwave spectroscopy. Two conformers of each molecule have been detected in the jet-cooled rotational spectrum. The most stable conformer in both molecules exhibits an intramolecular N...H-O hydrogen bond (configuration 1) between the hydrogen atom of the carboxylic group and the nitrogen atom. The second conformer is characterized by an intramolecular N-H...O=C hydrogen bond (configuration 2). The conformers of 4(R)-hydroxyproline adopt a C(gamma)-exo puckering, while those of 4(S)-hydroxyproline present a C(gamma)-endo ring conformation. These ring conformations, which show the same propensity observed in collagen-like peptides, are stabilized by additional intramolecular hydrogen bonds involving the 4-hydroxyl group, with the exception of the most stable form of 4(S)-hydroxyproline for which a n-pi interaction between the oxygen atom of the 4-hydroxyl group and the carboxyl group carbon seems to be established. A gauche effect could be also contributing to stabilize the observed conformers.  相似文献   

6.
Computation of accurate intramolecular hydrogen-bonding energies for peptides is of great importance in understanding the conformational stabilities of peptides and developing a more accurate force field for proteins. We have proposed a method to determine the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies in glycine and alanine peptides. In this article, the method is further applied to evaluate the intramolecular 10-membered ring N-H...O=C hydrogen-bonding energies in peptides. The optimal structures of the intramolecular 10-membered ring N-H...O=C hydrogen bonds in glycine and alanine tripetide molecules are obtained at the MP2 level with 6-31G(d), 6-31G(d,p), and 6-31+G(d,p) basis sets. The intramolecular 10-membered ring N-H...O=C hydrogen-bonding energies are then evaluated based on our method at the MP2/6-311++G(3df,2p) level with basis set superposition error correction. The intramolecular 10-membered ring N-H...O=C hydrogen-bonding energies are calculated to be in the range of -6.84 to -7.66, -4.44 to -4.98, and -6.95 to -7.88 kcal/mol. The method is also applied to estimate the individual intermolecular hydrogen-bonding energies in the dimers of amino-acetaldehyde, 2-amino-acetamide, formamide, and oxalamide, each dimer having two identical intermolecular hydrogen bonds. According to our method, the individual intermolecular hydrogen-bonding energies in the four dimers are calculated to be -1.77, -1.67, -6.35, and -4.82 kcal/mol at the MP2/6-311++G(d,p) level, which are in good agreement with the values of -1.84, -1.72, -6.23, and -4.93 kcal/mol predicted by the supermolecular method.  相似文献   

7.
A comprehensive conformational analysis of isolated 2'-beta-deoxy-6-azacytidine (d6AC), an analogue of therapeutically active 6-azacytidine (6AC), has been performed by means of ab initio calculations at the MP2/6-311++G(2df,pd)//DFT B3LYP/6-31G(d,p) level of theory. Among the 81 conformers located within a 7.83 kcal/mol Gibbs energy range at T = 298.15 K, 38 contain syn-oriented bases with respect to 2'-deoxyribose; the other conformers include anti-oriented bases. Energetic analysis of these conformers shows that conformational equilibrium of isolated d6AC at T = 298.15 K is shifted to syn conformation with a syn/anti ratio estimated as 61.4%:38.6%. As far as the sugar conformation is concerned, 40 conformers contain north (N) (with 0.3 degrees < or = P < or = 40.1 degrees), and the rest possess south (S) (with 157.1 degrees < or = P < or = 207.0 degrees) puckers, where P is the pseudorotational angle of the furanose ring. The S/N occupancy ratio is estimated as 80.2%:19.8% (T = 298.15 K). The two most stable conformers are energetically quasidegenerate and correspond to both C2'-endo/syn conformers differing only by orientation of the O3'H hydroxyl group. They are both stabilized by means of similar intramolecular H-bonds, i.e., O5'H...O2, C2'H2...O2, and C2'H2...O5'. As examined by AIM criteria, from 1 to 3 H-bonds per conformer were identified among 13 possible interactions: O5'H...O2, O5'H...N6, O3'H...O5', O5'H...O3', C1'H...O2, C2'H2...O2, C2'H2...O5', C3'H...O2, C3'H...N6, C5'H1...O2, C5'H2...O2, C5'H1...N6, and C5'H2...N6. The biological effect of d6AC is conceived as an inhibition of replicative DNA polymerase caused by an unusual orientation of the sugar residue against the base in the only A form DNA-like conformer.  相似文献   

8.
Laser-induced fluorescence (LIF), dispersed fluorescence (DF), mass-resolved one-color resonance enhanced two-photon ionization (RE2PI) and UV-UV hole-burning spectra of 2-aminoindan (2-AI) were measured in a supersonic jet. The hole-burning spectra demonstrated that the congested vibronic structures observed in the LIF excitation spectrum were responsible for three conformers of 2-AI. The origins of the conformers were observed at 36931, 36934, and 36955 cm(-1). The DF spectra obtained by exciting the band origins of the three conformers showed quite similar vibrational structures, with the exception of the bands around 600-900 cm(-1). The molecular structures of the three conformers were assigned with the aid of ab initio calculations at the MP2/6-311+G(d,p) level. An amino hydrogen of the most stable conformer points toward the benzene ring. The stability of the most stable conformer was attributed to an intramolecular N-H...pi hydrogen bonding between the hydrogen atom and the pi-electron of the benzene ring. The other two conformers, devoid of intramolecular hydrogen bonding, were also identified for 2-AI. This suggests weak hydrogen bonding in the most stable conformer. The intramolecular N-H...pi hydrogen bonding in 2-AI was discussed in comparison with other weak hydrogen-bonding systems.  相似文献   

9.
Coded amino acids in gas phase: the shape of isoleucine   总被引:1,自引:0,他引:1  
The solid alpha-amino acid isoleucine has been vaporized by laser ablation and expanded in a supersonic jet, where the molecular conformations of the isolated molecule were probed using Fourier transform microwave spectroscopy. Two conformers of neutral isoleucine have been detected in gas phase, the most stable being stabilized by an intramolecular hydrogen bond N-H...O=C and a cis-COOH arrangement. The higher energy form is stabilized by an intramolecular hydrogen bond N...H-O. The sec-butyl side chain of the amino acid adopts the same configuration in the two observed conformers, with a staggered configuration at Cbeta similar to that observed in valine and a trans arrangement of Calpha and Cdelta. Ab initio calculations at MP2/6-311++G(d,p) level reproduce satisfactorily the experimental results.  相似文献   

10.
In the ground state, o-tosylaminobenzoic and o-acetylaminobenzoic acids exist in the form of two rotamers with intramolecular hydrogen bonds N-H...O=C (cis) and N-H...O(OH)-C (trans). In nonpolar solvents, the formation of dimers with hydrogen bonding between carboxyl groups takes place. Efficient barrierless excited state intramolecular proton transfer (ESIPT) occurs along the N-H...O=C hydrogen bond upon excitation of o-tosylaminobenzoic acid. The efficiency of ESIPT in o-acetylaminobenzoic acid is lower because of the low acidity of the substituted amino group.  相似文献   

11.
Intramolecular N-H...O hydrogen bonds in 3-(aminomethylene)pyran-2,4-dione and its simple derivatives (F, Li, and BeH substituents) were analyzed theoretically. The systems were optimized at the B3LYP/6-311++G(d,p) level of approximation. For some fluorine derivatives the corresponding tautomers with O-H...N intramolecular H-bonds were investigated, and for such pairs of tautomers, the calculations on transition states of the N-H...O <--> N...H-O proton-transfer reaction were carried out. The geometrical and energetic parameters for these species were characterized. The topological parameters derived from Bader theory were also analyzed; these are characteristics of H-bond critical points and also of ring critical points. Besides N-H...O and O-H...N intramolecular hydrogen bonds, there are the other intramolecular interactions, mostly ionic such as Be(+delta)...(-delta)O, Li(+delta)...(-delta)O, and Li(+delta)...(-delta)F. The F...O interactions also exist for some of species investigated. They may be classified as energetically stabilizing ones since the corresponding bond paths and critical points exist. The numerous correlations and dependencies between geometrical, topological, and energetic parameters were detected and described.  相似文献   

12.
The 1H and 15N NMR spectra of several 15N-labeled pyridoxal-5'-phosphate model systems have been measured at low temperature in various aprotic and protic solvents of different polarity, i.e., dichloromethane-d2, acetonitrile-d3, tetrahydrofuran-d8, freon mixture CDF3/CDClF2, and methanol. In particular, the 15N-labeled 5'-triisopropyl-silyl ether of N-(pyridoxylidene)-tolylamine (1a), N-(pyridoxylidene)-methylamine (2a), and the Schiff base with 15N-2-methylaspartic acid (3a) and their complexes with proton donors such as triphenylmethanol, phenol, and carboxylic acids of increasing strength were studied. With the use of hydrogen bond correlation techniques, the 1H/15N chemical shift and scalar coupling data could be associated with the geometries of the intermolecular O1H1N1 (pyridine nitrogen) and the intramolecular O2H2N2 (Schiff base) hydrogen bonds. Whereas O1H1N1 is characterized by a series of asymmetric low-barrier hydrogen bonds, the proton in O2H2N2 faces a barrier for proton transfer of medium height. When the substituent on the Schiff base nitrogen is an aromatic ring, the shift of the proton in O1H1N1 from oxygen to nitrogen has little effect on the position of the proton in the O2H2N2 hydrogen bond. By contrast, when the substituent on the Schiff base nitrogen is a methyl group, a proton shift from O to N in O1H1N1 drives the tautomeric equilibrium in O2H2N2 from the neutral O2-H2...N2 to the zwitterionic O2-...H2-N(2+) form. This coupling is lost in aqueous solution where the intramolecular O2H2N2 hydrogen bond is broken by solute-solvent interactions. However, in methanol, which mimics hydrogen bonds to the Schiff base in the enzyme active site, the coupling is preserved. Therefore, the reactivity of Schiff base intermediates in pyridoxal-5'-phosphate enzymes can likely be tuned to the requirements of the reaction being catalyzed by differential protonation of the pyridine nitrogen.  相似文献   

13.
2-Phenylethylamine (PEA) is the simplest aromatic amine neurotransmitter, as well as one of the most important. In this work, the conformational equilibrium and hydrogen bonding in liquid PEA were studied by means of Raman spectroscopy and theoretical calculations (DFT/MP2). By changing the orientation of the ethyl and the NH(2) group, nine possible conformers of PEA were found, including four degenerate conformers. Comparison of the experimental Raman spectra of liquid PEA and the calculated Raman spectra of the five typical conformers in selected regions (550-800 and 1250-1500 cm(-1)) revealed that the five conformers can coexist in conformational equilibrium in the liquid. The NH(2) stretching mode of the liquid is red-shifted by ca. 30 cm(-1) relative to that of an isolated PEA molecule (measured previously), implying that intermolecular N-H···N hydrogen bonds play an important role in liquid PEA. The relative intensity of the Raman band at 762 cm(-1) was found to increase with increasing temperature, indicating that the anti conformer might be favorable in liquid PEA at room temperature. The blue shift of the band for the bonded N-H stretch with increasing temperature also provides evidence of the existence of intermolecular N-H···N hydrogen bonds.  相似文献   

14.
The contribution of aromaticity and intramolecular hydrogen bonding to relative stability, for a set of (1H-azahetero-2-ylidene)-acetaldehyde and 2-azahetero-2-yl-ethanol tautomeric pairs, has been investigated by means of quantum chemical DFT and ab initio methods up to the MP4(SDTQ)/AUG-cc-pVDZ and MP2/AUG-cc-pVTZ levels of theory. It is found that the relative energy of the tautomers is governed by the change in the degree of heterocycle aromaticity upon intramolecular hydrogen transfer. An analysis of geometrical parameters of a hydrogen-bonded system reveals a clear relationship between the aromaticity of the heterocycle, the conjugation in a resonant spacer, and the strengths of the intramolecular hydrogen bonds. This allows the conclusion to be drawn that intramolecular N-H...O and O-H...N hydrogen bonds formed are found to be resonance-assisted and their strength is dependent on the pi-donating/accepting properties of the heterocycle. On the basis of the results of the calculations, a simple model describing the mechanism of resonance assistance of hydrogen bonding has been suggested.  相似文献   

15.
Very short C-H...O, N-H...O, and O-H...O hydrogen bonds have been generated utilizing the cyclic phosphate [CH2(6-t-Bu-4-Me-C6H2O)2]P(O)OH (1). X-ray structures of (i) 1 (unsolvated, two polymorphs), 1...EtOH, and 1...MeOH, (ii) [imidazolium](+)[CH2(6-t-Bu-4-Me-C6H2O)2PO2](-)...MeOH [2], (iii) [HNC5H4-N=N-C5H4NH](2+)[(CH2(6-t-Bu-4-Me-C6H2O)2PO2)2](2-)...4CH3CN...H2O [3], (v) [K, 18-crown-6](+)[(CH2(6-t-Bu-4-Me-C6H2O)2P(O)OH)(CH2(6-t-Bu-4-Me-C6H2O)2PO2)](-)...2THF [4], (vi) 1...cytosine...MeOH [5], (vii) 1...adenine...1/2MeOH [6], and (viii) 1...S-(-)-proline [7] have been determined. The phosphate 1 in both its forms is a hydrogen-bonded dimer with a short O-H...O distance of 2.481(2) [triclinic form] or 2.507(3) A [monoclinic form]. Compound 2 has a helical structure with a very short C-H...O hydrogen bond involving an imidazolyl C-H and methanol in addition to N-H...O hydrogen bonds. A helical motif is also seen in 5. In 3, an extremely short N-H...O hydrogen bond [N...O 2.558(4) A] is observed. Compounds 6 and 7 also exhibit short N-H...O hydrogen bonds. In 1...EtOH, a 12-membered hydrogen-bonded ring motif, with one of the shortest known O-H...O hydrogen bonds [O...O 2.368(4) A], is present. 1...MeOH is a similar dimer with a very short O(-H)...O bond [2.429(3) A]. In 4, the deprotonated phosphate (anion) and the parent acid are held together by a hydrogen bond on one side and a coordinate/covalent bond to potassium on the other; the O-H...O bond is symmetrical and very strong [O...O 2.397(3) A].  相似文献   

16.
Benzotriazole,N,N’-dimethylpiperazine and N-methylpiperazine were applied to crystallize with 5-sulfosalicylic acid(5-H2SSA),affording three new binary molecular cocrystals [(C6H6N3+).(C7H5O6S-)].H2O(1),[(C6H16N22+)1/2.(C7H5O6S-)].H2O(2) and [(C5H14N22+).(C7H5O6S-)2].3H2O(3) under general conditions.Proton-transferring occurs from acid to nitrogen of N-donor compounds in all compounds 1,2 and 3.Analysis of the hydrogen-bonding synthons and their effects on crystal packing were also presented in the context of crystal engineering and host-guest chemistry.In compound 1,1-D infinite chains are extended to a 2-D layered architecture via strong O-H...O hydrogen bonds and then to a 3-D network by N-H...O interactions.Compound 2 and 3 both have the 1-D chain which is formed by O-H...O bonds and weak C-H...O hydrogen bonds.A common intramolecular S(6) [synthon I] ring is formed by the hydroxyl with the carboxyl group in all three compounds.  相似文献   

17.
The role of an ortho-alkylthioether group in controlling the conformation around the ring-N bonds of meta-connected arylamide oligomers is studied. Density functional theory (DFT) geometries of model compounds, including acetanilide, an ether acetanilide, and a thioether acetanilide, and their corresponding diamides, show that for either monoamide or diamide the alkyl side chain of the thioether should be perpendicular to the aryl plane, whereas for the ether monoamide, the alkyl side chain is in the aryl plane. DFT ring-N torsional potentials and constrained geometries of the model compounds demonstrate that carbonyl-S repulsion leads to a high torsional barrier and that intramolecular N-H...S and C-H...O hydrogen bonds and ring-amide conjugation lead to N-H having a preferred orientation in the benzene plane pointing towards S. The N-H bond lengthens and the ortho-ring C-H bond shortens in a regular pattern in the approach to the preferred orientation. Calculated IR frequencies for the N-H stretch show a clear red shift between model compounds without and with the thioether side chain.  相似文献   

18.
[structure: see text] Crystals of a disecondary squaramide covalently linked to a crown ether presents a great variety of inter- and intramolecular nonbonded interactions including C-H/pi contacts, C-H...O and N-H...O hydrogen bonds, and pi-pi stacking between squaramide rings. Latter interaction, the stacking between squaramide rings, can be considered as an experimental evidence for the proposed aromaticity of squaramide when it is forming hydrogen bonds, either as acceptor or donor.  相似文献   

19.
Quantum-chemical calculations (B3LYP/6-311G**) of N-(1-trifluoromethylsulfonylamino-2,2,2-trichloroethyl)acrylamide CF3SO2NHCH(CCl3)NHC(O)CH=CH2 (I) in the isolated state revealed four local minima corresponding to the conformers with the syn- and antiperiplanar orientation of the C=O and N-H bonds in the amide fragment, two of which containing the intramolecular C(O)NH…O=S or SO2NH…O=C hydrogen bonds. Judged from the data of IR spectroscopy and dielectrometry, compound I in inert media exists predominantly in the form of conformer with antiperiplanar amide fragment and free NH group. Its self-associates in molecular crystals and solutions are formed by hydrogen bonds SO2NH…O=C. Spectroscopic acidity of compound I determined as the value of Δν(NH) upon interactions with DMF in CCl4 is higher than that of N-methyltrifluoromethanesulfonamide.  相似文献   

20.
The conformational isomerism of the propylene oxide (PO)...2-fluoroethanol (FE) complex has been investigated using molecular beam Fourier-transform microwave spectroscopy complemented with high level ab initio calculations. Rotational transitions of three different binary conformers have been observed experimentally. On the basis of the agreement of the experimental and calculated rotational constants, they could be identified as the three most stable structures, anti G-g+, anti G+g-, and syn G+g-. All the observed structures exhibit a primary O-H...O hydrogen bond, an intramolecular O-H...F hydrogen bond and two secondary intermolecular C-H...F contacts. The two anti conformers, with FE and the PO methyl group on the opposite sides of the oxirane ring, show higher abundances than the syn conformer. In all three observed conformers, FE remains approximately in its favorable compact gauche conformation. The monofluorination of the molecular lock-and-key model system PO...ethanol increases not only the number of possible binary conformers, but also the discrimination energy among them. The superior discrimination ability of FE as compared to ethanol classifies it as a tailored key to the PO lock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号