首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mixed monolayers of stearic acid (SA) and octadecylamine (ODA) at the air/water interface were investigated in this article. The miscibility of the two compounds was evaluated by the measurement of surface pressure-area per molecule (pi-A) isothems and the direct observation of Brewster angle microscopy (BAM) on the water surface. The two compounds were spread individually on the subphase (method 1) or premixed first in the spreading solvent and then cospread (method 2). The effect of spreading method on the miscibility of the two compounds was also studied. The results show that the mixed monolayers prepared by method 1 cannot get a well-mixed state. The isotherms of mixed monolayers preserve both characteristics of SA and ODA and exhibit two collapse points. The calculated excess surface area is very small. Besides, distinguished domains corresponding to those of pure SA and ODA can be inspected from the BAM images. Such results indicate that SA and ODA cannot get a well-mixed phase via 2-dimensional mixing. On the contrary, in the mixed monolayer prepared by cospreading, the two compounds exhibit high miscibility. In the pi-A isotherms, the individual characteristics of SA and ODA disappear. The calculated excess area exhibits a highly positive deviation which indicates the existence of special interaction between the two compounds. The low compressibility of isotherm implies the highly rigid characteristic of the mixed monolayer. which was also sustained by the striplike collapse morphology observed from the BAM. The rigid characteristic of SA/ODA mixed monolayer was attributed to the formation of "catanionic surfactant" by electrostatic adsorption of headgroups of SA and ODA or to the formation of salt by acid-base reaction.  相似文献   

2.
Stearic acid (SA) and octadecylamine (ODA) monolayers at the air/liquid interface were used as template layers to adsorb glucose oxidase (GOx) from aqueous solution. The effect of the template monolayers on the adsorption behavior of GOx was studied in terms of the variation of surface pressure, the evolution of surface morphology observed by BAM and AFM, and the conformation of adsorbed GOx. The results show that the presence of a template monolayer can enhance the adsorption rate of GOx; furthermore, ODA has a higher ability, compared to SA, to adsorb GOx, which is attributed to the electrostatic attractive interaction between ODA and GOx. For adsorption performed on a bare surface or on an SA monolayer, the surface pressure approaches an equilibrium value (ca. 8 mN/m) after 2 to 3 h of adsorption and remains nearly constant in the following adsorption process. For the adsorption on an ODA monolayer, the surface pressure will increase further 1 to 2 h after approaching the first equilibrium pressure, which is termed the second adsorption stage. The measurement of circular dichroism (CD) spectroscopy indicates that the Langmuir-Blodgett films of adsorbed GOx transferred at the first equilibrium state (π = 8 mN/m) have mainly a β-sheet conformation, which is independent of the type of template monolayers. However, the ODA/GOx LB film transferred at the second adsorption stage has mainly an α-helix conformation. It is concluded that the specific interaction between ODA and GOx not only leads to a higher adsorption rate and adsorbed amount of GOx but also induces a conformation change in adsorbed GOx from β-sheet to α-helix. The present results indicate that is possible to control the conformation of adsorbed protein by selecting the appropriate template monolayer.  相似文献   

3.
A trisilanol polyhedral oligomeric silsesquioxane (POSS), trisilanolcyclohexyl-POSS (TCyP), has recently been reported to undergo a series of phase transitions from traditional Langmuir monolayers to unique rodlike hydrophobic aggregates in multilayer films that are different from "collapsed" morphologies seen in other systems at the air/water interface. This paper focuses on the phase transitions and morphology of films varying in average thickness from monolayers to trilayers and the corresponding viscoelastic properties of trisilanolcyclohexyl-POSS molecules at the air/water interface by means of surface pressure-area per molecule (Pi-A) isotherms, Brewster angle microscopy (BAM), and interfacial stress rheometry (ISR) measurements. The morphology studies by BAM reveal that the TCyP monolayer can collapse into different 3D structures by homogeneous or heterogeneous nucleation mechanisms. For homogeneous nucleation, analysis by Vollhardt et al.'s nucleation and growth model reveals that TCyP collapse is consistent with instantaneous nucleation with hemispherical edge growth at Pi = 3.7 mN.m(-1). Both surface storage (Gs') and loss (Gs") moduli obtained by ISR reveal three different non-Newtonian flow regimes that correlate with phase transitions in the Pi-A isotherms: (A) A viscous liquidlike "monolayer"; (B) a "biphasic regime"between a liquidlike viscous monolayer and a more rigid trilayer; and (C) an elastic solidlike "trilayer". These observations provide interesting insights into collapse mechanisms and structures in Langmuir films.  相似文献   

4.
In this communication we demonstrated the incorporation of water-soluble surface-active protein OVA within an insoluble cationic ODA monolayer and compared with zwitterionic (DPPC) and anionic (SA) monolayer. The incorporation of OVA is found to be more in ODA as compared to that of DPPC and SA. The kinetics of protein adsorption in lipid monolayer gives the idea that unfolding of OVA is less in case of DPPC than SA and ODA. The pi-A isotherm and compressibility study gives the information about the different states of the protein-lipid mixed monolayer. At higher pressure, OVA tend to squeeze out from the lipids monolayer. High-resolution field emission scanning electron microscope (FE-SEM) images confirm this observation. The surface morphology of DPPC-OVA LB film is far better than ODA-OVA and SA-OVA LB film. OVA forms large irregular aggregates on SA and ODA monolayer. Fluorescence study reveals that protein structure is perturbed more in SA and ODA system compared to that of DPPC. The overall results indicate that DPPC monolayer is better to get protein lipid mixed film than SA and ODA monolayer.  相似文献   

5.
The spread or Langmuir monolayer behavior of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), with a double-tailed cationic surfactant, dihexadecyldimethylammonium bromide (DHDAB), at the air/water interface was analyzed with surface pressure-area isotherms, area relaxation curves, and Brewster angle microscope (BAM) images. The surface pressure-area isotherms showed that with increasing the DHDAB molar ratio, X(DHDAB), spread monolayers of HTMA-DS with DHDAB became rigid. In addition, unreasonably small limiting areas per alkyl chain of the molecules in the monolayers were found, especially at X(DHDAB)=0.5, implying the molecular loss from the monolayers at the interface. For spread HTMA-DS/DHDAB monolayers at the interface, a new IPA, DHDA-DS, was proposed to form through the displacement of HTMA(+) from HTMA-DS by DHDA(+), leaving HTMA(+) dissociated. The formation of DHDA-DS and the desorption of dissociated HTMA(+) upon the interface compression were supported by the results obtained from designed monolayer experiments with BAM observations, and were discussed by considering the hydrophilicity, packing efficiency, and headgroup charge characteristic of the species. Moreover, the area relaxation curves of spread HTMA-DS/DHDAB monolayers suggested that the formation of DHDA-DS was strongly related to the improved monolayer stability at the interface, which may have implications for the DHDAB-enhanced physical stability of catanionic vesicles composed of HTMA-DS.  相似文献   

6.
This study investigated the thermodynamic behavior and relaxation processes of mixed DPPC/cholesterol monolayers at the air/water interface at 37°C. Surface pressure–area isotherms and relaxation curves for the mixed monolayers were obtained by using a computer-controlled film balance. In the thermodynamic analysis of the mixed monolayers, the areas of monolayers exhibited negative deviations from the ideal values at all compositions for lower surface pressures. However, at higher surface pressures, distinctively positive deviations from ideality were observed at lower DPPC contents. Excess free energies of mixing had been calculated and the most stable state of the mixed monolayer with xDPPC=0.5 or 0.6 was found. Moreover, the relaxation kinetics of the mixed monolayers was investigated by measuring the surface area as a function of time at a constant surface pressure of 40 mN m−1. It was shown that the relaxation processes could be described by the models considering nucleation and growth mechanisms.  相似文献   

7.
The phase behavior and morphological characteristics of monolayers composed of equimolar mixed cationic-anionic surfactants at the air/water interface were investigated by measurements of surface pressure-area per alkyl chain (pi-A) and surface potential-area per alkyl chain (DeltaV-A) isotherms with Brewster angle microscope (BAM) observations. Cationic single-alkyl ammonium bromides and anionic sodium single-alkyl sulfates with alkyl chain length ranging from C(12) to C(16) were used to form mixed surfactant monolayers on the water subphase at 21 degrees C by a co-spreading approach. The results demonstrated that when the monolayers were at states with larger areas per alkyl chain during the monolayer compression process, the DeltaV-A isotherms were generally more sensitive than the pi-A isotherms to the molecular orientation variations. For the mixed monolayer components with longer alkyl chains, a close-packed monolayer with condensed monolayer characteristics resulted apparently due to the stronger dispersion interaction between the molecules. BAM images also revealed that with the increase in the alkyl chain length of the surfactants in the mixed monolayers, the condensed/collapse phase formation of the monolayers during the interface compression stage became pronounced. In addition, the variations in the condensed monolayer morphology of the equimolar mixed cationic-anionic surfactants were closely related to the alkyl chain lengths of the components.  相似文献   

8.
In this work, organized mixed monolayers containing a cationic water-insoluble iridium(III) complex, Ir-dye, [Ir(ppy)(2)(tmphen)]PF(6), (tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline, and ppy = 2-phenylpyridine), and an anionic lipid matrix, DMPA, dimyristoyl-phosphatidic acid, with different molar proportions, were formed by the co-spreading method at the air-water interface. The presence of the dye at the interface, as well as the molecular organization of the mixed films, is deduced from surface techniques such as pi-A isotherms, Brewster angle microscopy (BAM) and reflection spectroscopy. The results obtained remark the formation of an equimolar mixed film, Ir-dye/DMPA = 1:1. BAM images reveal a whole homogeneous monolayer, with gradually increasing reflectivity along the compression process up to reaching the collapse of this equimolecular monolayer at pi approximately equal to 37 mNm(-1). Increasing the molar ratio of DMPA in the mixture, the excess of lipid molecules organizes themselves forming dark flower-like domains of pure DMPA at high surface pressures, coexisting with the mixed Ir-dye/DMPA = 1:1 monolayer. On the other hand, unstable mixed monolayers are obtained by using an initial dye surface concentration higher than the equimolecular one. These mixed Langmuir monolayers have been successfully transferred onto solid substrates by the LB (Langmuir-Blodgett) technique.  相似文献   

9.
Three kinds of Langmuir monolayers formed by dipalmitoylphosphatidylcholine (DPPC), arachidic acid (AA), and octadecylamine (ODA) were used as templates to study the initial stage of nucleation and crystallization of calcium phosphates. It was demonstrated that the combination of calcium ions (or phosphates) to the monolayer/subphase interface is a prerequisite for subsequent nucleation. It was found that calcium phosphate dihydrate (DPCD) formed at 25.0 degrees C for 12 h has a biphasic structure containing both amorphous and crystalline phases. These results showed that calcium phosphates were formed through a multistage assembly process, during which an initial amorphous phase DPCD was followed by a phase transformation into a crystalline phase and then the most stable hydroxyapatite (HAp). This provided new insights into the template-biomineral interaction and a mechanism for biomineralization.  相似文献   

10.
The review demonstrates the recent theoretical and experimental progress in the understanding of penetration systems at the air-water interface in which a dissolved amphiphile (surfactant, protein) penetrates into a Langmuir monolayer. The critical review of the existing theoretical models which describe the thermodynamics of the penetration are critically reviewed. Although a rigorous thermodynamic analysis of penetration systems is unavailable due to their complexity, some model assumptions, e.g. the invariability of the activity coefficient of the insoluble component of the monolayer during the penetration of the soluble component results in reasonable solutions. New theoretical models describing the equilibrium behaviour of the insoluble monolayers which undergo the 2D aggregation in the monolayer, and the equations of state and adsorption isotherms which assume the existence of multiple states (conformations) of a protein molecule within the monolayer and the non-ideality of the adsorbed monolayers are now available. The theories which describe the penetration of a soluble surfactant into the main phases of Langmuir monolayers were presented first for the case of the mixture of the molecules possessing equal partial molar surfaces (the mixture of homologues), with further extension of the models to include the interesting process of the protein penetration into the monolayer of 2D aggregating phospholipid. This extension was based on a concept which subdivides the protein molecules into independent fragments with areas equal to those of the phospholipid molecule. Various mechanisms for the effect of the soluble surfactant on the aggregation of the insoluble component were considered in the theoretical models: (i) no effect on the aggregate formation process; (ii) formation of mixed aggregates; and (iii) the influence on the aggregating process via the change of aggregation constant, but without any formation of mixed aggregates. Accordingly depending on the mechanism, different forms of the equations of state of the monolayer and of the adsorption isotherms of soluble surfactant are predicted. Based on the shape of the experimental pi-A isotherms, interesting conclusions can be drawn on the real mechanism. First experimental evidence has been provided that the penetration of different proteins and surfactants into a DPPC monolayer in a fluid-like state induces a first order main phase transition of pure DPPC. The phase transition is indicated by a break point in the pi(t) penetration kinetics curves and the domain formation by BAM. Mixed aggregates of protein with phospholipid are not formed. These results agree satisfactorily with the predictions of the theoretical models. New information on phase transition and phase properties of Langmuir monolayers penetrated by soluble amphiphiles are obtained by coupling of the pi(t) penetration kinetics curves with BAM and GIXD measurements. The GIXD results on the penetration of beta-lactoglobulin into DPPC monolayers have shown that protein penetration occurs without any specific interactions with the DPPC molecules and the condensed phase consists only of DPPC.  相似文献   

11.
The role of dipalmitoylphosphatic acid (DPPA) as a transfer promoter to enhance the Langmuir-Blodgett (LB) deposition of a dipalmitoylphosphatidylcholine (DPPC) monolayer at air/liquid interfaces was investigated, and the effects of Ca2+ ions in the subphase were discussed. The miscibility of the two components at air/liquid interfaces was evaluated by surface pressure-area per molecule isotherms, thermodynamic analysis, and by the direct observation of Brewster angle microscopy (BAM). Multilayer LB deposition behavior of the mixed DPPA/DPPC monolayers was then studied by transferring the monolayers onto hydrophilic glass plates at a surface pressure of 30 mN/m. The results showed that the two components, DPPA and DPPC, were miscible in a monolayer on both subphases of pure water and 0.2 mM CaCl2 solution. However, an exception occurs between X(DPPA)=0.2 and 0.5 at air/CaCl2-solution interface, where a partially miscible monolayer with phase separation may occur. Negative deviations in the excess area analysis were found for the mixed monolayer system, indicating the existence of attractive interactions between DPPA and DPPC molecules in the monolayers. The monolayers were stable at the surface pressure of 30 mN/m for the following LB deposition as evaluated from the area relaxation behavior. It was found that the presence of Ca2+ ions had a stabilization effect for DPPA-rich monolayers, probably due to the association of negatively charged DPPA molecules with Ca2+ ions. Moreover, the Ca2+ ions may enhance the adhesion of DPPA polar groups to a glass surface and the interactions between DPPA polar groups in the multilayer LB film structure. As a result, Y-type multilayer LB films containing DPPC could be fabricated from the mixed DPPA/DPPC monolayers with the presence of Ca2+ ions.  相似文献   

12.
The structural and dynamic characteristics of dioctadecyldimethylammonium bromide (DODAB) monolayers on a pure water subphase were investigated by surface film balance, Brewster angle microscopy, and relaxation in area and surface pressure at constant surface pressure and area, respectively. The first compression-expansion cycle of the monolayer is not reversible and the second pi-A compression isotherm deviates to larger molecular areas relative to the first one. At a microscopic level this hysteresis may be assigned to an irreversible hydration of the ammonium groups of DODAB. The morphology and reflectivity of DODAB monolayers during compression and expansion on the monolayer depend on the monolayer history. Bright domains randomly dispersed were observed during compression before collapse. Surprisingly, this random distribution of domains changes into a fractal-like structure during the monolayer expansion in a narrow range of surface pressures. This morphology does not form when the monolayer is previously compressed above the collapse surface pressure. 2D foam-like structure is often observed when the film is expanded at maximum area. Relaxation phenomena in DODAB monolayers are attributed to monolayer reorganization and nucleation of liquid-condensed domains from the liquid-expanded phase. These time-dependent processes are irreversible.  相似文献   

13.
Alamethicin (ALM), a 20-amino acid antibiotic peptide (peptaibol) from fungal sources, was mixed in Langmuir monolayers with six different surfactants: semifluorinated (F6H18, F10H19, F8H10OH, F6H10SH) and hydrogenated (C18SH and DODAC), aimed at finding appropriate molecules for ALM incorporation for nanodevice construction. Alamethicin-containing mixed monolayers were investigated by means of surface manometry (pi-A isotherms) and Brewster angle microscopy (BAM). Our results show that only semifluorinated alkanes can serve as an appropriate material since they form miscible and homogeneous monolayers with ALM within the whole concentration range. All the remaining surfactants, possessing polar groups, were found to demix with ALM. This effect was explained as being due to the existence of strong polar interactions between vertically oriented surfactant molecules, which tend to separate from horizontally oriented alpha-helices of the peptide. On the contrary, semifluorinated alkanes, lacking any polar group in their structure and bearing a large dipole moment, interact with ALM, also possessing a huge cumulative dipole moment. These dipole-dipole interactions between ALM and SFAs are more attractive than those between SFA molecules in their pure monolayers, causing the large ALM molecule, situated parallel to the interface, to be surrounded by SFA molecules in perpendicular orientation, leading to the formation of a highly organized binary mixed monolayer. BAM images of the ALM monolayer indicate that this peptide collapses with the nucleation and growth mechanism, like the majority of surfactants, which contradicts the model of ALM collapse by desorption, previously published in the literature.  相似文献   

14.
Three heteroleptic tris(phathlocyaninato) dysprosium triple-decker complexes with different alkoxy groups at the peripheral positions of the medium phthalocyanine ligand (Pc)Dy[Pc(OCnH(2n+1))8]Dy(Pc) (n = 4, 8, 16) (I-III) {Pc = unsubstituted phthalocyaninate; Pc(OC4H9)8 = 2,3,9,10,16,17,23,24-octakis(butyloxy)phthalocyaninate; Pc(OC8H17)8 = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyaninate; Pc(OC16H33)8 = 2,3,9,10,16,17,23,24-octakis(hexadecyloxy)phthalocyaninate} have been synthesized, and their aggregate behaviors in monolayer and multilayer solid films have been comparatively studied. The pure compounds and their 1:4 mixtures with stearic acid (SA) have been found to form a stable monolayer at the air/water interface with a tilted edge-on orientation of (Pc)Dy[Pc(OCnH(2n+1))8]Dy(Pc) molecules. In the pure monolayers of the three triple-decker compounds, wirelike molecular aggregates were observed by high-resolution transmission electron microscopy (HRTEM). Adding SA has been found to prevent triple-decker compounds (Pc)Dy[Pc(OC4H9)8]Dy(Pc) (I) and (Pc)Dy[Pc(OC8H17)8]Dy(Pc) (II) from forming large aggregates, and small domains with a diameter of ca. 10 nm were observed in the mixed monolayers. HRTEM studies revealed that two crystalline phases with rectangular and hexagonal lattice structure are present in the small domains. However, both pi-A isotherms and HRTEM studies indicated that the mixed monolayer of compound (Pc)Dy[Pc(OC16H33)8]Dy(Pc) (III) with SA did not show a difference from the corresponding pure monolayer. The SA molecules were pressed into the cavity above the phthalocyanine ring formed by the eight long hexadecyloxy side chains of the medium macrocycle ligand in III. The multilayer LB films of all of these triple deckers fabricated by the vertical dipping method showed very good layered structure as revealed by the multiple-order diffraction peaks in low-angle X-ray diffraction (LAXRD) patterns.  相似文献   

15.
In this work we have analyzed the penetration of betalactoglobulin into a monoglyceride monolayer (monopalmitin or monoolein) spread at the air-water interface and its effects on the structural, dilatational, and topographical characteristics of mixed films. Dynamic tensiometry, surface film balance, Brewster angle microscopy (BAM), and surface dilatational rheology have been used, maintaining the temperature constant at 20 degrees C and the pH and ionic strength at 7 and 0.05 M, respectively. The initial surface pressure (mN/m) of the spread monoglyceride monolayer (pii(MONOGLYCERIDE)) at 10, 20, and the collapse point is the variable studied. Beta-lactoglobulin can penetrate into a spread monoglyceride monolayer at every surface pressure. The penetration of beta-lactoglobulin into the monoglyceride monolayer with a more condensed structure, at the collapse point of the monoglyceride, requires monoglyceride molecular loss by collapse and/or desorption. However, the structural, topographical, and dilatational characteristics of monoglyceride penetrated by beta-lactoglobulin mixed monolayers are essentially dominated by the presence of monoglyceride (either monopalmitin or monoolein) in the mixed film. In fact, monoglyceride molecules have the capacity to re-enter the monolayer after expansion and recompression of the mixed monolayer. Thus, monoglyceride molecular loss by collapse and/or desorption is reversible. The topography of the monolayer under dynamic conditions corroborates these conclusions.  相似文献   

16.
In this work, surface properties of octadecylamine (ODA) monolayers in the presence of different concentrations of calf thymus DNA in the aqueous subphase covering a range of 2-8μM have been investigated. The increase of DNA concentration is accompanied by a marked increment in the expansion of the corresponding isotherms. In addition, there is a change in the profile of the isotherms ranging from an abrupt liquid-solid transition for the lipid monolayer on pure water to a slow condensation of the monolayer in a liquid state when DNA is added to the subphase, demonstrating the effective adsorption of the polynucleotide to the long chain amine monolayer. Additional phase transitions appear in the isotherms upon addition of sufficient amount of DNA, revealing the existence of specific processes such as folding or squeezing out of the DNA. This system is, however, highly reversible during compression-expansion cycles due to the strong interaction between the two components. These results are also supported by Brewster Angle Microscopy (BAM) images showing significant changes in the morphology of the film. Integral reflectivity of the BAM microscope has been used to study both isotherms themselves and the kinetic process of DNA inclusion into the lipid-like ODA monolayer. This parameter has been proven to be very effective for quantification of the monolayer processes showing high consistency with the compressibility and kinetics results.  相似文献   

17.
We report on the reduction of aqueous chloroaurate ions by glucose to form gold nanoparticles of uniform size. We further demonstrate the complexation of these particles with octadecylamine (ODA) monolayers at the air-water interface. Pressure-area (pi-A) isotherms as a function of time of complexation revealed a significant expansion of the monolayer. Surface pressure variation with time for constant areas after spreading of the monolayer was carried out to observe the kinetics of complexation of the colloidal particles at the interface. The kinetics of complexation of the particles at the interface was also monitored by Brewster angle microscopy (BAM) measurements. Langmuir-Blodgett films of the particles complexed with ODA were formed at a subphase pH of 9 onto different substrates. Quartz crystal microgravimetry (QCM) was used to quantify the amount of particles deposited per immersion cycle of the quartz crystal. The LB films were further characterized by UV-vis and transmission electron microscopy (TEM) measurements. TEM measurements indicate a close packed and equidistant arrangement of colloidal particles in the LB film, probably due to hydrogen-bonding interactions.  相似文献   

18.
The interaction of the glycoalkaloid tomatine with monolayers of dimyristoylphosphatidylcholine (DMPC) and cholesterol, as well as other selected sterols, has been investigated using surface pressure measurements at constant area and Brewster angle microscopy (BAM). The interaction of tomatine with sterol monolayers is found to vary with the structure of the sterol. The interaction of tomatine with cholesterol-containing monolayers results in a surface pressure increase accompanied by the appearance of a mottled texture. Morphological changes are observed that suggest the formation of tomatine-cholesterol complexes that aggregate at the water-air interface. No morphology change observable by BAM is observed for monolayers containing epicholesterol, suggesting that the stereochemistry of hydrogen bonding between the sterol and the sugar units on tomatine is of particular significance. Strong interactions are observed with cholestanol- and coprostanol-containing monolayers, and BAM reveals formation of spiked aggregates upon interaction with 7:3 mole ratio DMPC/coprostanol mixed monolayers. More modest surface pressure changes are observed for cholestenone- and epicoprostanol-containing monolayers. A much smaller surface pressure increase is observed when tomatine is injected beneath a pure DMPC monolayer.  相似文献   

19.
The surface active derivative of the organic dye Acridine Orange (N-10-dodecyl-acridine orange (DAO)) has been included in mixed Langmuir monolayers with stearic acid (SA). The maximum relative content on DAO for a stable mixed monolayer is a molar ratio of X(DAO) = 0.5. Brewster angle microscopy (BAM) reveals a high homogeneity at the micrometer level for the mixed monolayer in equimolar proportion (X(DAO) = 0.5), whereas the appearance of domains occurs for lower content of DAO, i.e., X(DAO) = 0.2 and 0.1. The aggregation of the DAO headgroup leads to well-defined H-aggregates at the air/water interface for those mixed monolayers with a low content of DAO. However, for the mixed monolayers enriched in DAO, e.g., X(DAO) = 0.5, the molecular crowding prevents the formation of defined supramolecular structures. Molecular organization and tilting of the DAO headgroup is quantitatively analyzed by in situ UV-visible reflection spectroscopy. The formation of H-aggregates of the DAO headgroup can be reversibly tuned with the applied surface pressure. A molecular mechanism for the conformational rearrangement of the DAO molecule is proposed using RM1 quantum semiempirical calculations.  相似文献   

20.
Mixed monolayers of deuterated palmitic acid C(15)D(31)COOH (dPA) and deuterated stearic acid C(17)D(35)COOH (dSA) with 1-bromoalkanes of different alkyl chain length (C(4) to C(16)) at the air-water interface were investigated. Alkanes and 1-chlorohexadecane ClC(16)H(33) (ClHex) were also studied to compare the effects of the halogen on the mixed monolayers. Surface pressure-area isotherms and Brewster angle microscopy (BAM) were used to obtain the organization and phase behavior, providing a macroscopic view of the mixed monolayers. A molecular-level understanding of the interfacial molecular organization and intermolecular interactions was obtained by using vibrational sum frequency generation (SFG) spectroscopy and infrared reflection-absorption spectroscopy (IRRAS). It was found that from the alkyl halide molecules investigated 1-bromopentadecane, BrC(15)H(31) (BrPent), 1-bromohexadecane, BrC(16)H(33) (BrHex), and ClHex incorporate into the fatty acid monolayers. Alkanes of 15- and 16-carbon chain length do not incorporate into the fatty acid monolayer, which suggests that the halogen is needed for incorporation. Isotherms and spectra suggest that BrHex molecules are squeezed out, or excluded, from the fatty acid monolayer as the surface pressure is increased, while BAM images confirm this. Additionally, SFG spectra reveal that the alkyl chains of both fatty acids (dPA and dSA) retain an all-trans conformation after the incorporation of alkyl halide molecules. BAM images show that at low surface pressures BrHex does not affect the two-dimensional morphology of the dPA and dSA domains and that BrHex is miscible with dPA and dSA. We also present for the first time BAM images of BrHex deposited on a water surface, which reveal the formation of aggregates while the surface pressure remains unchanged from that of neat water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号