首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
For q = p r with a prime p ≥ 7 such that ${q \equiv 1}$ or 19 (mod 30), the desarguesian projective plane PG(2, q) of order q has a unique conjugacy class of projectivity groups isomorphic to the alternating group A 6 of degree 6. For a projectivity group ${\Gamma \cong A_6}$ of PG(2, q), we investigate the geometric properties of the (unique) Γ-orbit ${\mathcal{O}}$ of size 90 such that the 1-point stabilizer of Γ in its action on ${\mathcal O}$ is a cyclic group of order 4. Here ${\mathcal O}$ lies either in PG(2, q) or in PG(2, q 2) according as 3 is a square or a non-square element in GF(q). We show that if q ≥ 349 and q ≠ 421, then ${\mathcal O}$ is a 90-arc, which turns out to be complete for q = 349, 409, 529, 601,661. Interestingly, ${\mathcal O}$ is the smallest known complete arc in PG(2,601) and in PG(2,661). Computations are carried out by MAGMA.  相似文献   

2.
3.
Let qp s be a power of a prime number p and let ${\mathbb {F}_{\rm q}}$ be a finite field with q elements. This paper aims to demonstrate the utility and relation of composed products to other areas such as the factorization of cyclotomic polynomials, construction of irreducible polynomials, and linear recurrence sequences over ${\mathbb {F}_{\rm q}}$ . In particular we obtain the explicit factorization of the cyclotomic polynomial ${\Phi_{2^nr}}$ over ${\mathbb {F}_{\rm q}}$ where both r ≥ 3 and q are odd, gcd(q, r) = 1, and ${n\in \mathbb{N}}$ . Previously, only the special cases when r = 1, 3, 5, had been achieved. For this we make the assumption that the explicit factorization of ${\Phi_r}$ over ${\mathbb {F}_{\rm q}}$ is given to us as a known. Let ${n = p_1^{e_1}p_2^{e_2}\cdots p_s^{e_s}}$ be the factorization of ${n \in \mathbb{N}}$ into powers of distinct primes p i , 1 ≤ i ≤ s. In the case that the multiplicative orders of q modulo all these prime powers ${p_i^{e_i}}$ are pairwise coprime, we show how to obtain the explicit factors of ${\Phi_{n}}$ from the factors of each ${\Phi_{p_i^{e_i}}}$ . We also demonstrate how to obtain the factorization of ${\Phi_{mn}}$ from the factorization of ${\Phi_n}$ when q is a primitive root modulo m and ${{\rm gcd}(m, n) = {\rm gcd}(\phi(m),{\rm ord}_n(q)) = 1.}$ Here ${\phi}$ is the Euler’s totient function, and ord n (q) denotes the multiplicative order of q modulo n. Moreover, we present the construction of a new class of irreducible polynomials over ${\mathbb {F}_{\rm q}}$ and generalize a result due to Varshamov (Soviet Math Dokl 29:334–336, 1984).  相似文献   

4.
5.
Let ${U \subset \mathbb{R}^{N}}$ be a neighbourhood of the origin and a function ${F:U\rightarrow U}$ be of class C r , r ≥ 2, F(0) = 0. Denote by F n the n-th iterate of F and let ${0<|s_1|\leq \cdots \leq|s_N| <1 }$ , where ${s_1, \ldots , s_N}$ are the eigenvalues of dF(0). Assume that the Schröder equation ${\varphi(F(x))=S\varphi(x)}$ , where S: = dF(0) has a C 2 solution φ such that dφ(0) = id. If ${\frac{log|s_1|}{log|s_N|} <2 }$ then the sequence {S ?n F n (x)} converges for every point x from the basin of attraction of F to a C 2 solution φ of (1). If ${2\leq\frac{log|s_1|}{log|s_N|} }$ then this sequence can be diverging. In this case we give some sufficient conditions for the convergence and divergence of the sequence {S ?n F n (x)}. Moreover, we show that if F is of class C r and ${r>\big[\frac{log|s_1|}{log|s_N|} \big ]:=p \geq 2}$ then every C r solution of the Schröder equation such that dφ(0) = id is given by the formula $$\begin{array}{ll}\varphi (x)={\lim\limits_{n \rightarrow \infty}} (S^{-n}F^n(x) + {\sum\limits _{k=2}^{p}} S^{-n}L_k (F^n(x))),\end{array}$$ where ${L_k:\mathbb{R}^{N} \rightarrow \mathbb{R}^{N}}$ are some homogeneous polynomials of degree k, which are determined by the differentials d (j) F(0) for 1 < j ≤  p.  相似文献   

6.
We determine nontrivial intervals \({I \subset(0,+\infty)}\) , numbers \({\alpha\in\mathbb R}\) and continuous bijections \({f \colon I \to I}\) such that f(x)f ?1(x) = x α for every \({x\in I}\) .  相似文献   

7.
We study the Laplace equation in the half-space ${\mathbb{R}_{+}^{n}}$ with a nonlinear supercritical Robin boundary condition ${\frac{\partial u}{\partial\eta }+\lambda u=u\left\vert u\right\vert^{\rho-1}+f(x)}$ on ${\partial \mathbb{R}_{+}^{n}=\mathbb{R}^{n-1}}$ , where n ≥ 3 and λ ≥ 0. Existence of solutions ${u \in E_{pq}= \mathcal{D}^{1, p}(\mathbb{R}_{+}^{n}) \cap L^{q}(\mathbb{R}_{+}^{n})}$ is obtained by means of a fixed point argument for a small data $f \in {L^{d}(\mathbb{R}^{n-1})}$ . The indexes p, q are chosen for the norm ${\Vert\cdot\Vert_{E_{pq}}}$ to be invariant by scaling of the boundary problem. The solution u is positive whether f(x) > 0 a.e. ${x\in\mathbb{R}^{n-1}}$ . When f is radially symmetric, u is invariant under rotations around the axis {x n  = 0}. Moreover, in a certain L q -norm, we show that solutions depend continuously on the parameter λ ≥ 0.  相似文献   

8.
Let n ≥ 2 be a fixed integer, let q and c be two integers with q > n and (n, q) = (c, q) = 1. For every positive integer a which is coprime with q we denote by ${\overline{a}_{c}}$ the unique integer satisfying ${1\leq\overline{a}_{c} \leq{q}}$ and ${a\overline{a}_{c} \equiv{c}({\rm mod}\, q)}$ . Put $$L(q)=\{a\in{Z^{+}}: (a,q)=1, n {\not\hskip0.1mm|} a+\overline{a}_{c} \}.$$ The elements of L(q) are called D.H. Lehmer numbers. The main purpose of this paper is to prove that (under natural conditions) every sufficiently large integer can be expressed as the sum of three D.H. Lehmer numbers.  相似文献   

9.
For positive integers a and b, an ${(a, \overline{b})}$ -parking function of length n is a sequence (p 1, . . . , p n ) of nonnegative integers whose weakly increasing order q 1 ≤ . . . ≤ q n satisfies the condition q i  < a + (i ? 1)b. In this paper, we give a new proof of the enumeration formula for ${(a, \overline{b})}$ -parking functions by using of the cycle lemma for words, which leads to some enumerative results for the ${(a, \overline{b})}$ -parking functions with some restrictions such as symmetric property and periodic property. Based on a bijection between ${(a, \overline{b})}$ -parking functions and rooted forests, we enumerate combinatorially the ${(a, \overline{b})}$ -parking functions with identical initial terms and symmetric ${(a, \overline{b})}$ -parking functions with respect to the middle term. Moreover, we derive the critical group of a multigraph that is closely related to ${(a, \overline{b})}$ -parking functions.  相似文献   

10.
We study the problem $$\left\{\begin{array}{ll}\Delta_p u = |u|^{q-2}u, & \quad x \in \Omega ,\\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}= \lambda |u|^{p-2}u, &\quad x \in \partial \Omega, \end{array}\right.$$ where \({\Omega \subset \mathbb{R}^N}\) is a bounded smooth domain, \({\nu}\) is the outward unit normal at \({\partial \Omega}\) and \({\lambda > 0}\) is regarded as a bifurcation parameter. When p = 2 and in the superlinear regime q > 2, we show existence of n nontrivial solutions for all \({\lambda > \lambda_n}\) , \({\lambda_n}\) being the n-th Steklov eigenvalue. It is proved in addition that bifurcation from the trivial solution takes place at all \({\lambda_n}\) ’s. Similar results are obtained in the sublinear case 1 < q < 2. In this case, bifurcation from infinity takes place in those \({\lambda_n}\) with odd multiplicity. Partial extensions of these features are shown in the nonlinear diffusion case \({p \neq 2}\) and related problems under spatially heterogeneous reactions are also addressed.  相似文献   

11.
Fix integers nr ≥ 2. A clique partition of ${{[n] \choose r}}$ is a collection of proper subsets ${A_1, A_2, \ldots, A_t \subset [n]}$ such that ${\bigcup_i{A_i \choose r}}$ is a partition of ${{[n]\choose r}}$ . Let cp(n, r) denote the minimum size of a clique partition of ${{[n] \choose r}}$ . A classical theorem of de Bruijn and Erd?s states that cp(n, 2) =?n. In this paper we study cp(n, r), and show in general that for each fixed r ≥ 3, $${\rm cp}(n, r) \geq (1 + o(1))n^{r/2} \quad \quad {\rm as} \, \, n \rightarrow \infty.$$ We conjecture cp(n, r) =?(1 +?o(1))n r/2. This conjecture has already been verified (in a very strong sense) for r = 3 by Hartman–Mullin–Stinson. We give further evidence of this conjecture by constructing, for each r ≥ 4, a family of (1?+?o(1))n r/2 subsets of [n] with the following property: no two r-sets of [n] are covered more than once and all but o(n r ) of the r-sets of [n] are covered. We also give an absolute lower bound ${{\rm cp}(n, r) \geq {n \choose r}/{q + r - 1 \choose r}}$ when n =?q 2 + q +?r ? 1, and for each r characterize the finitely many configurations achieving equality with the lower bound. Finally we note the connection of cp(n, r) to extremal graph theory, and determine some new asymptotically sharp bounds for the Zarankiewicz problem.  相似文献   

12.
We give a general construction leading to different non-isomorphic families $\varGamma_{n,q}(\mathcal{K})$ of connected q-regular semisymmetric graphs of order 2q n+1 embedded in $\operatorname{PG}(n+1,q)$ , for a prime power q=p h , using the linear representation of a particular point set $\mathcal{K}$ of size q contained in a hyperplane of $\operatorname{PG}(n+1,q)$ . We show that, when $\mathcal{K}$ is a normal rational curve with one point removed, the graphs $\varGamma_{n,q}(\mathcal{K})$ are isomorphic to the graphs constructed for q=p h in Lazebnik and Viglione (J. Graph Theory 41, 249–258, 2002) and to the graphs constructed for q prime in Du et al. (Eur. J. Comb. 24, 897–902, 2003). These graphs were known to be semisymmetric but their full automorphism group was up to now unknown. For qn+3 or q=p=n+2, n≥2, we obtain their full automorphism group from our construction by showing that, for an arc $\mathcal{K}$ , every automorphism of $\varGamma_{n,q}(\mathcal{K})$ is induced by a collineation of the ambient space $\operatorname{PG}(n+1,q)$ . We also give some other examples of semisymmetric graphs $\varGamma _{n,q}(\mathcal{K})$ for which not every automorphism is induced by a collineation of their ambient space.  相似文献   

13.
We study limit behavior for sums of the form $\frac{1}{|\Lambda_{L|}}\sum_{x\in \Lambda_{L}}u(t,x),$ where the field $\Lambda_L=\left\{x\in {\bf{Z^d}}:|x|\le L\right\}$ is composed of solutions of the parabolic Anderson equation $$u(t,x) = 1 + \kappa \mathop{\int}_{0}^{t} \Delta u(s,x){\rm d}s + \mathop{\int}_{0}^{t}u(s,x)\partial B_{x}(s). $$ The index set is a box in Z d , namely $\Lambda_{L} = \left\{x\in {\bf Z}^{\bf d} : |x| \leq L\right\}$ and L = L(t) is a nondecreasing function $L : [0,\infty)\rightarrow {\bf R}^{+}. $ We identify two critical parameters $\eta(1) < \eta(2)$ such that for $\gamma > \eta(1)$ and L(t) = eγ t , the sums $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ satisfy a law of large numbers, or put another way, they exhibit annealed behavior. For $\gamma > \eta(2)$ and L(t) = eγ t , one has $\sum_{x\in \Lambda_L}u(t,x)$ when properly normalized and centered satisfies a central limit theorem. For subexponential scales, that is when $\lim_{t \rightarrow \infty} \frac{1}{t}\ln L(t) = 0,$ quenched asymptotics occur. That means $\lim_{t\rightarrow \infty}\frac{1}{t}\ln\left (\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)\right) = \gamma(\kappa),$ where $\gamma(\kappa)$ is the almost sure Lyapunov exponent, i.e. $\lim_{t\rightarrow \infty}\frac{1}{t}\ln u(t,x)= \gamma(\kappa).$ We also examine the behavior of $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ for L = e γ t with γ in the transition range $(0,\eta(1))$   相似文献   

14.
A group distance magic labeling or a ${\mathcal{G}}$ -distance magic labeling of a graph G =  (V, E) with ${|V | = n}$ is a bijection f from V to an Abelian group ${\mathcal{G}}$ of order n such that the weight ${w(x) = \sum_{y\in N_G(x)}f(y)}$ of every vertex ${x \in V}$ is equal to the same element ${\mu \in \mathcal{G}}$ , called the magic constant. In this paper we will show that if G is a graph of order n =  2 p (2k + 1) for some natural numbers p, k such that ${\deg(v)\equiv c \mod {2^{p+1}}}$ for some constant c for any ${v \in V(G)}$ , then there exists a ${\mathcal{G}}$ -distance magic labeling for any Abelian group ${\mathcal{G}}$ of order 4n for the composition G[C 4]. Moreover we prove that if ${\mathcal{G}}$ is an arbitrary Abelian group of order 4n such that ${\mathcal{G} \cong \mathbb{Z}_2 \times\mathbb{Z}_2 \times \mathcal{A}}$ for some Abelian group ${\mathcal{A}}$ of order n, then there exists a ${\mathcal{G}}$ -distance magic labeling for any graph G[C 4], where G is a graph of order n and n is an arbitrary natural number.  相似文献   

15.
We consider the following q-eigenvalue problem for the p-Laplacian $$\left\{\begin{array}{ll}-{\rm div}\big( |\nabla u|^{p-2}\nabla u\big) = \lambda \|u\|_{L^{q}(\Omega)}^{p-q}|u|^{q-2}u \quad \quad\, {\rm in} \,\,\,\, \Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,\,{\rm on } \,\,\,\, \partial\Omega,\end{array}\right.$$ where \({\lambda\in\mathbb{R},}\) p > 1, Ω is a bounded and smooth domain of \({\mathbb{R}^{N},}\) N > 1, \({1\leq q < p^{\star}}\) , \({p^{\star}=\frac{Np}{N-p}}\) if p < N and \({p^{\star}=\infty}\) if \({p\geq N.}\) Let λ q denote the first q-eigenvalue. We prove that in the super-linear case, \({p < q < p^{\star},}\) there exists \({\epsilon_{q}>0}\) such that if \({\lambda\in(\lambda_{q},\lambda _{q}+\epsilon_{q})}\) is a q-eigenvalue, then any corresponding q-eigenfunction does not change sign in Ω. As a consequence of this result we obtain, in the super-linear case, the isolatedness of λ q for those Ω such that the Lane–Emden problem $$\left\{\begin{array}{ll}-{\rm div}\big(|\nabla u|^{p-2}\nabla u\big) = |u|^{q-2}u \qquad\quad\quad\quad \,\,{\rm in}\,\,\,\Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,{\rm on } \,\,\, \partial\Omega,\end{array}\right.$$ has exactly one positive solution.  相似文献   

16.
Let ${\vartheta}$ be a measure on the polydisc ${\mathbb{D}^n}$ which is the product of n regular Borel probability measures so that ${\vartheta([r,1)^n\times\mathbb{T}^n) >0 }$ for all 0 < r < 1. The Bergman space ${A^2_{\vartheta}}$ consists of all holomorphic functions that are square integrable with respect to ${\vartheta}$ . In one dimension, it is well known that if f is continuous on the closed disc ${\overline{\mathbb{D}}}$ , then the Hankel operator H f is compact on ${A^2_\vartheta}$ . In this paper we show that for n ≥ 2 and f a continuous function on ${{\overline{\mathbb{D}}}^n}$ , H f is compact on ${A^2_\vartheta}$ if and only if there is a decomposition f = h + g, where h belongs to ${A^2_\vartheta}$ and ${\lim_{z\to\partial\mathbb{D}^n}g(z)=0}$ .  相似文献   

17.
Let M(n, ξ) be the moduli space of stable vector bundles of rank n ≥ 3 and fixed determinant ξ over a complex smooth projective algebraic curve X of genus g ≥ 4. We use the gonality of the curve and r-Hecke morphisms to describe a smooth open set of an irreducible component of the Hilbert scheme of M(n, ξ), and to compute its dimension. We prove similar results for the scheme of morphisms ${M or_P (\mathbb{G}, M(n, \xi))}$ and the moduli space of stable bundles over ${X \times \mathbb{G}}$ , where ${\mathbb{G}}$ is the Grassmannian ${\mathbb{G}(n - r, \mathbb{C}^n)}$ . Moreover, we give sufficient conditions for ${M or_{2ns}(\mathbb{P}^1, M(n, \xi))}$ to be non-empty, when s ≥ 1.  相似文献   

18.
In the projective planes PG(2, q), more than 1230 new small complete arcs are obtained for ${q \leq 13627}$ and ${q \in G}$ where G is a set of 38 values in the range 13687,..., 45893; also, ${2^{18} \in G}$ . This implies new upper bounds on the smallest size t 2(2, q) of a complete arc in PG(2, q). From the new bounds it follows that $$t_{2}(2, q) < 4.5\sqrt{q} \, {\rm for} \, q \leq 2647$$ and q = 2659,2663,2683,2693,2753,2801. Also, $$t_{2}(2, q) < 4.8\sqrt{q} \, {\rm for} \, q \leq 5419$$ and q = 5441,5443,5449,5471,5477,5479,5483,5501,5521. Moreover, $$t_{2}(2, q) < 5\sqrt{q} \, {\rm for} \, q \leq 9497$$ and q = 9539,9587,9613,9623,9649,9689,9923,9973. Finally, $$t_{2}(2, q) <5 .15\sqrt{q} \, {\rm for} \, q \leq 13627$$ and q = 13687,13697,13711,14009. Using the new arcs it is shown that $$t_{2}(2, q) < \sqrt{q}\ln^{0.73}q {\rm for} 109 \leq q \leq 13627\, {\rm and}\, q \in G.$$ Also, as q grows, the positive difference ${\sqrt{q}\ln^{0.73} q-\overline{t}_{2}(2, q)}$ has a tendency to increase whereas the ratio ${\overline{t}_{2}(2, q)/(\sqrt{q}\ln^{0.73} q)}$ tends to decrease. Here ${\overline{t}_{2}(2, q)}$ is the smallest known size of a complete arc in PG(2,q). These properties allow us to conjecture that the estimate ${t_{2}(2,q) < \sqrt{q}\ln ^{0.73}q}$ holds for all ${q \geq 109.}$ The new upper bounds are obtained by finding new small complete arcs in PG(2,q) with the help of a computer search using randomized greedy algorithms. Finally, new forms of the upper bound on t 2(2,q) are proposed.  相似文献   

19.
Using elementary arguments based on the Fourier transform we prove that for ${1 \leq q < p < \infty}$ and ${s \geq 0}$ with s > n(1/2 ? 1/p), if ${f \in L^{q,\infty} (\mathbb{R}^n) \cap \dot{H}^s (\mathbb{R}^n)}$ , then ${f \in L^p(\mathbb{R}^n)}$ and there exists a constant c p,q,s such that $$\| f \|_{L^{p}} \leq c_{p,q,s} \| f \|^\theta _{L^{q,\infty}} \| f \|^{1-\theta}_{\dot{H}^s},$$ where 1/pθ/q + (1?θ)(1/2?s/n). In particular, in ${\mathbb{R}^2}$ we obtain the generalised Ladyzhenskaya inequality ${\| f \| _{L^4} \leq c \| f \|^{1/2}_{L^{2,\infty}} \| f \|^{1/2}_{\dot{H}^1}}$ .We also show that for s = n/2 and q > 1 the norm in ${\| f \|_{\dot{H}^{n/2}}}$ can be replaced by the norm in BMO. As well as giving relatively simple proofs of these inequalities, this paper provides a brief primer of some basic concepts in harmonic analysis, including weak spaces, the Fourier transform, the Lebesgue Differentiation Theorem, and Calderon–Zygmund decompositions.  相似文献   

20.
Let ${\mathcal{C}}$ be the convex hull of points ${{\{{1 \choose x}{1 \choose x}^T \,|\, x\in \mathcal{F}\subset \Re^n\}}}$ . Representing or approximating ${\mathcal{C}}$ is a fundamental problem for global optimization algorithms based on convex relaxations of products of variables. We show that if n ≤ 4 and ${\mathcal{F}}$ is a simplex, then ${\mathcal{C}}$ has a computable representation in terms of matrices X that are doubly nonnegative (positive semidefinite and componentwise nonnegative). We also prove that if n = 2 and ${\mathcal{F}}$ is a box, then ${\mathcal{C}}$ has a representation that combines semidefiniteness with constraints on product terms obtained from the reformulation-linearization technique (RLT). The simplex result generalizes known representations for the convex hull of ${{\{(x_1, x_2, x_1x_2)\,|\, x\in\mathcal{F}\}}}$ when ${\mathcal{F}\subset\Re^2}$ is a triangle, while the result for box constraints generalizes the well-known fact that in this case the RLT constraints generate the convex hull of ${{\{(x_1, x_2, x_1x_2)\,|\, x\in\mathcal{F}\}}}$ . When n = 3 and ${\mathcal{F}}$ is a box, we show that a representation for ${\mathcal{C}}$ can be obtained by utilizing the simplex result for n = 4 in conjunction with a triangulation of the 3-cube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号