首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Qualitative and quantitative analysis of post‐translational protein modifications by mass spectrometry is often hampered by changes in the ionization/detection efficiencies caused by amino acid modifications. This paper reports a comprehensive study of the influence of phosphorylation and methylation on the responsiveness of peptides to matrix‐assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectrometry. Using well‐characterized synthetic peptide mixtures consisting of modified peptides and their unmodified analogs, relative ionization/detection efficiencies of phosphorylated, monomethylated, and dimethylated peptides were determined. Our results clearly confirm that the ion yields are generally lower and the signal intensities are reduced with phosphopeptides than with their nonphosphorylated analogs and that this has to be taken into account in MALDI and ESI mass spectrometry. However, the average reduction of ion yield caused by phosphorylation is more pronounced with MALDI than with ESI. The unpredictable impact of phosphorylation does not depend on the hydrophobicity and net charge of the peptide, indicating that reliable quantification of phosphorylation by mass spectrometry requires the use of internal standards. In contrast to phosphorylation, mono‐ and dimethylated peptides frequently exhibit increased signal intensities in MALDI mass spectrometry (MALDI‐MS). Despite minor matrix‐dependent variability, MALDI methods are well suited for the sensitive detection of dimethylated arginine and lysine peptides. Mono‐ and dimethylation of the arginine guanidino group did not significantly influence the ionization efficiency of peptides in ESI‐MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
At sufficiently high mass accuracy, it is possible to distinguish phosphorylated from unmodified peptides by mass measurement alone. We examine the feasibility of that idea, tested against a library of all possible in silico tryptic digest peptides from the human proteome database. The overlaps between in silico tryptic digest phosphopeptides generated from known phosphorylated proteins (1-12 sites) and all possible unmodified human peptides are considered for assumed mass error ranges of ±10, ±50, ±100, ±1,000, and ±10,000 ppb. We find that for mass error ±50 ppb, 95% of all phosphorylated human tryptic peptides can be distinguished from nonmodified peptides by accurate mass alone through the entire nominal mass range. We discuss the prospect of on-line LC MS/MS to identify phosphopeptide precursor ions in MS1 for selected dissociation in MS2 to identify the peptide and site(s) of phosphorylation.  相似文献   

3.
We investigated the effect of N-terminal amino group and carboxyl group methylation on peptide analysis by electrospray mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS). Permethylation of the N-terminal amino group and the carboxyl groups can reduce metal ion adducts but does not enhance sensitivity in electrospray as previously observed for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. N-terminal trimethylated peptides exhibit collision-induced dissociation (CID) tandem mass spectra that differ from their unmodified analogs; the results support the mobile proton hypothesis of peptide fragmentation. A permanent positive charge at the N-terminus leads to competition between permanent-charge directed processes and loss of the N-terminal trimethyl amino group. Carboxyl methylation has no effect on fragmentation behavior other than to shift the mass of fragments containing methylated carboxyl groups. Comparison of regular and tandem mass spectra of different methylated peptides allowed probing the location of incomplete methylation, the proton displaced by alkali metal ions and the purity of a mass-selected methylated peptide ion.  相似文献   

4.
A two-step mass spectrometric method for characterization of phosphopeptides from peptide mixtures is presented. In the first step, phosphopeptide candidates were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) based on their higher relative intensities in negative ion MALDI spectra than in positive ion MALDI spectra. The detection limit for this step was found to be 18 femtomoles or lower in the case of unfractionated in-solution digests of a model phosphoprotein, beta-casein. In the second step, nanoelectrospray tandem mass (nES-MS/MS) spectra of doubly or triply charged precursor ions of these candidate phosphopeptides were obtained using a quadrupole time-of-flight (Q-TOF) mass spectrometer. This step provided information about the phosphorylated residues, and ruled out nonphosphorylated candidates, for these peptides. After [(32)P] labeling and reverse-phase high-performance liquid chromatography (RP-HPLC) to simplify the mixtures and to monitor the efficiency of phosphopeptide identification, we used this method to identify multiple autophosphorylation sites on the PKR-like endoplasmic reticulum kinase (PERK), a recently discovered mammalian stress-response protein.  相似文献   

5.
In this study, we report the detailed analysis of the fragmentation patterns of positively charged lipid A species based on their tandem mass spectra obtained under low‐energy collision‐induced dissociation conditions of an electrospray quadrupole time‐of‐flight mass spectrometer. The tandem mass spectrometry experiments were performed after the separation of the compounds with a reversed‐phase high performance liquid chromatography method. We found that both, phosphorylated and nonphosphorylated lipid A molecules can be readily ionized in the positive‐ion mode by adduct formation with triethylamine added to the eluent. The tandem mass spectra of the lipid A triethylammonium adduct ions showed several product ions corresponding to inter‐ring glycosidic cleavages of the sugar residues, as well as consecutive and competitive eliminations of fatty acids, phosphoric acid, and water following the neutral loss of triethylamine. Characteristic product ions provided direct information on the phosphorylation site(s), also when phosphorylation isomers (ie, containing either a C1 or a C4′ phosphate group) were simultaneously present in the sample. Continuous series of high‐abundance B‐type and low‐abundance Y‐type inter‐ring fragment ions were indicative of the fatty acyl distribution between the nonreducing and reducing ends of the lipid A backbone. The previously reported lipid A structures of Proteus morganii O34 and Escherichia coli O111 bacteria were used as standards. Although, the fragmentation pathways of the differently phosphorylated lipid A species significantly differed in the negative‐ion mode, they were very similar in the positive‐ion mode. The complementary use of positive‐ion and negative‐ion mode tandem mass spectrometry was found to be essential for the full structural characterization of the C1‐monophosphorylated lipid A species.  相似文献   

6.
Ion trap mass spectrometry has been shown to be particularly suitable for the structural analysis of high molecular weight peptides directly fragmented in the mass analyser without needing further sub-digestion reactions. Here we report the advantages of using multi-stage ion trap mass spectrometry in the structural characterisation of haemoglobin alkylated with epichlorohydrin and diepoxybutane. Alkylated globins were digested with trypsin and the peptide mixtures were analysed by MS(3). This technique allows the sequential fragmentation of peptides under analysis, giving rise to MS(3) product ion spectra with additional information with respect to MS(2) mass spectra. The results obtained complete the previously reported structural characterisation of alkylated haemoglobin, demonstrating the potential of ion trap mass spectrometry.  相似文献   

7.
High-performance liquid chromatography (HPLC) coupled to atmospheric pressure chemical ionization (APCI) mass spectrometry was used for the separation and detection of amino acid and peptide enantiomers. With detection limits as low as 250 pg, 25 amino acids enantiomers were baseline resolved on a Chirobiotic T chiral stationary phase. APCI demonstrated an order of magnitude better sensitivity over electrospray ionization (ESI) for free amino acids and low molecular mass peptides at the high LC flow-rates necessary for rapid analysis. As the peptide chain length increased (peptides with M(r) > or = 300 Da), however, ESI proved to be the more ideal atmospheric pressure ionization source. A mobile phase consisting of 1% (w/w) ammonium trifluoroacetate in methanol and 0.1% (w/w) formic acid in water increased the sensitivity of the APCI method significantly. A step gradient was then used to separate simultaneously all 19 native protein amino acid enantiomers in less than 20 min using extracted ion chromatograms.  相似文献   

8.
The enrichment of phosphopeptides using immobilized metal ion affinity chromatography (IMAC) and subsequent mass spectrometric analysis is a powerful protocol for detecting phosphopeptides and analyzing their phosphorylation state. However, nonspecific binding peptides, such as acidic, nonphosphorylated peptides, often coelute and make analyses of mass spectra difficult. This study used a partial chemical tagging reaction of a phosphopeptide mixture, enriched by IMAC and contaminated with nonspecific binding peptides, following a modified beta-elimination/Michael addition method, and dynamic mass analysis of the resulting peptide pool. Mercaptoethanol was used as a chemical tag and nitrilotriacetic acid (NTA) immobilized on Sepharose beads was used for IMAC enrichment. The time-dependent dynamic mass analysis of the partially tagged reaction mixture detected intact phosphopeptides and their mercaptoethanol-tagged derivatives simultaneously by their mass difference (-20 Da for each phosphorylation site). The number of new peaks appearing with the mass shift gave the number of multiply phosphorylated sites in a phosphopeptide. Therefore, this partial chemical tagging/dynamic mass analysis method can be a powerful tool for rapid and efficient phosphopeptide identification and analysis of the phosphorylation state concurrently using only MS analysis data.  相似文献   

9.
胡朝暾  肖震  周熙  陈佳  陈波  刘中华 《色谱》2015,33(6):628-633
家福捕鸟蛛(Selenocosmia jiafu)是一种生活在中国广西、云南等边远山区、中等个体、产毒量较大和毒性较强的蜘蛛新种。为了对家福捕鸟蛛粗毒成分进行初步探索,采用反相高效液相色谱、基质辅助激光解吸离子化飞行时间质谱和十二烷基硫酸钠-聚丙烯酰胺凝胶电泳方法对粗毒多肽和蛋白质的多样性进行了分析。结果表明:家福捕鸟蛛粗毒经色谱分离后得到40多个色谱峰,经质谱鉴定得到238个多肽,且多肽的相对分子质量呈现出双峰分布,其中62.5%的多肽的相对分子质量分布在3000~4500 之间,33.2%的多肽的相对分子质量分布在1000~3000之间。这种相对分子质量的分布模式不同于其他已经报道的蜘蛛粗毒中多肽的分布模式。电泳分析结果表明:除了相对分子质量在10000以下的多肽分子,粗毒在50、72和90 kD附近有3条明显的条带,粗毒电泳条带经液相色谱-电喷雾四极杆飞行时间质谱鉴定,主要是一些血蓝蛋白、钾离子通道蛋白、钙蛋白酶等。说明家福捕鸟蛛粗毒中多肽和蛋白质种类丰富。  相似文献   

10.
The noncovalent binding of various peptide ligands to pp60src (Src) SH2 (Src homology 2) domain protein (12.9 ku) has been used as a model system for development of electrospray ionization mass spectrometry (ESI-MS) as a tool to study noncovalently bound complexes. SH2 motifs in proteins are critical in the signal transduction pathways of the tyrosine kinase growth factor receptors and recognize phosphotyrosine-containing proteins and peptides. ESI-MS with a magnetic sector instrument and array detection has been used to detect the protein-peptide complex with low-picomole sensitivity. The relative abundances of the multiply charged ions for the complex formed between Src SH2 protein and several nonphosphorylated and phosphorylated peptides have been compared. The mass spectrometry data correlate well to the measured binding constants derived from solution-based methods, indicating that the mass spectrometry-based method can be used to assess the affinity of such interactions. Solution-phase equilibrium constants may be determined by measuring the amount of bound and unbound species as a function of concentration for construction of a Scatchard graph. ESI-MS of a solution containing Src SH2 with a mixture of phosphopeptides showed the expected protein-phosphopeptide complex as the dominant species in the mass spectrum, demonstrating the method’s potential for screening mixtures from peptide libraries.  相似文献   

11.
Tandem mass spectrometry of a mixture of two peptides that differ from each other by a single mass unit due to mutation is presented. The mutant beta-globin of hemoglobin Hoshida is present along with the normal counterpart, and the amino acid substitution of glutamine for glutamic acid is located within tryptic peptide T5 of M(r) 2057. 9. The mass of the mutated peptide is 1 u lower. In the isotopic cluster for the doubly charged ion of the peptide T5, the resolved ion with mass of 1030.0 represents the normal peptide with 93 (12)C atoms and the mutated one with 92 (12)C and one (13)C atoms. Collision-induced dissociation (CID) of this composite ion identified the mutation by presenting a key fragment derived from the (12)C-only mutant peptide, as reported in a previous study. Similarly, when an ion containing multiple (13)C atoms was selected as a precursor for CID, the mutation could be identified, even in large fragments, by a marked change in the shape of the isotopic cluster for the consecutive product ions. This study demonstrates the merit of selecting a resolved ion rather than the whole isotopic cluster as a precursor in the CID measurements of large peptides or proteins for characterizing heterozygous mutations.  相似文献   

12.
The selective enrichment of specific proteins or peptides on micropipette tips prior to mass spectrometry analysis, which can minimize non-specific interferences as well as sample loss, has been an important issue in current proteomics field. In this paper, we have developed an easy-to-use phosphopeptide-selective pipette tip in which titanium dioxide nanoparticles were embedded in monolithic structure photopolymerized from ethylene glycol dimethacrylate. The simple and convenient fabrication was feasible in a commercial polypropylene pipette tip. Phosphorylated peptides were isolated from non-phosphopeptides by TiO(2) nanoparticle and eluted by 100 mM ammonium phosphate (pH 8.5), which was compatible with 2,5-dihydroxybenzoic acid (DHB)/1% phosphoric acid matrix and allowed for direct analysis of the elution fraction by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) without the necessity of desalting pretreatment. Tryptic digested alpha-casein and beta-casein spiked into bovine serum albumin (BSA) nonphosphorylated peptides (molar ratio 1:1:10) were used to assess the selectivity of TiO(2) tips. The effect of 50 mM ammonium hydrogencarbonate, pH 8 in 50% acetonitrile used as a wash buffer in reduction of nonspecific bound peptide to TiO(2) tip was dramatic. Almost all non-phosphopeptides were not detected by MALDI-MS analysis. The lowest detectable amount of phosphopeptide was estimated at low femtomole level. The easy-to-use TiO(2)-embeded tips operated in combination with the modified wash and elution conditions enable an efficient phosphopeptide enrichment for mass spectrometric analysis.  相似文献   

13.
The use of a bis(terpyridine)ruthenium(ii) complex for peptide labeling (Ru-CO labeling) supplied high intensity peaks in mass spectrometry (MS) analysis that overcame the contribution of protonation or sodiated adduction to peptides. Ru-CO-labeled insulin A- and B-chains were detected simultaneously in comparable peak abundance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The mass spectra of chymotryptic peptide fragments of Ru-CO-labeled insulin also simultaneously indicated both N-terminal fragment ions, and amino acid sequences were determined easily by matrix-assisted laser desorption/ionization post-source-decay (MALDI-PSD). The sensitivity of detecting Ru-CO-labeled peptide fragment ions was not dependent on the length or the sequences of the peptides. The Ru-CO labeling method was applied to tryptic myoglobin fragments. The method indicated that each fragment ion is detected nearly equal in abundance and enabled the desired fragment ions to be distinguished from matrix clusters or their in-source fragments in lower mass regions. The desired fragment ions can be found in the mass region higher than 670.70 (= Ru-CO). This method provided a high sequence coverage (96%) by peptide mass fingerprinting (PMF). Application of this method to a protein mixture (myoglobin, lysozyme and ubiquitin) successfully achieved high sequence-coverage characterization (>90%) of these proteins simultaneously.  相似文献   

14.
The global dispersion of hemoglobin variants through population migration has precipitated a need for their identification. A particularly effective mass spectrometry (MS)-based procedure involves analysis of the intact globin chains in diluted blood to detect the variant through mass anomalies, followed by location of the variant amino acid residue by direct analysis of the enzymatically digested globins. Here we demonstrate the use of ion mobility separation in combination with this MS procedure to reduce mass spectral complexity. In one example, the doubly charged tryptic peptide from a low abundance variant (4%) occurred at the same m/z value as a singly and a doubly charged interfering ion. In another example, the singly charged tryptic peptide from an alpha-chain variant (26%) occurred at the same m/z value as a doubly charged interfering ion. Ion mobility was used to separate the variant ions from the interfering ions, thus allowing the variant peptides to be observed and sequenced by tandem mass spectrometry.  相似文献   

15.
Fragmentations of N-benzyloxycarbonyl-protected tripeptide ethyl esters containing proline were compared with those of the corresponding peptide derivatives not containing proline in negative-ion fast atom bombardment mass spectrometry. The fragment ion [M – 109]? due to loss of the benzyloxy group followed by dehydrogenation from the peptide molecule was the base peak in the negative-ion mass spectra for the peptides not containing proline, whilst it was a very weak fragment ion or not observed at all in those for the peptides containing proline. These results suggest that the fragmentations of the peptide derivatives in negative-ion fast atom bombardment mass spectrometry depend on the conformational difference of the peptide derivatives owing to the existence of proline in the derivative.  相似文献   

16.
A new approach to protein and peptide analysis that involves the coupling of on-line capillary electrophoresis-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry with a variation of sustained off-resonance irradiation is described. With this technique, multiple irradiation frequencies are broadcast simultaneously, which yields fragmentation of species at different mass-to-charge ratio values from the same waveform. In conjunction with capillary electrophoresis, this technique can provide sequence information from small amounts of proteins or peptides in complex mixtures. Initial results obtained from a mixture of gramicidin S (1141 u), bee venom melittin (2845 u), and equine apomyoglobin (16,951 u) are presented.  相似文献   

17.
Positive and negative molecular secondary ion as well as metastable ion mass spectra for various peptides are investigated to clarify their fragmentation regularity. The fragmentation regularity is derived by considering all the possible bond cleavages at the peptide bond or at the adjacent bonds. It is demonstrated that the amino acid sequence for an unknown peptide can be determined by interpreting the positive and negative secondary ion and metastable ion mass spectra using this fragmentation regularity.  相似文献   

18.
The gas-phase structures of doubly and triply protonated Amyloid-β12-28 peptides have been investigated through the combination of ion mobility (IM), electron capture dissociation (ECD) mass spectrometry, and infrared multi-photon dissociation (IRMPD) spectroscopy together with theoretical modeling. Replica-exchange molecular dynamics simulations were conducted to explore the conformational space of these protonated peptides, from which several classes of structures were found. Among the low-lying conformers, those with predicted diffusion cross-sections consistent with the ion mobility experiment were further selected and their IR spectra simulated using a hybrid quantum mechanical/semiempirical method at the ONIOM DFT/B3LYP/6-31 g(d)/AM1 level. In ECD mass spectrometry, the c/z product ion abundance (PIA) has been analyzed for the two charge states and revealed drastic differences. For the doubly protonated species, N – Cα bond cleavage occurs only on the N and C terminal parts, while a periodic distribution of PIA is clearly observed for the triply charged peptides. These PIA distributions have been rationalized by comparison with the inverse of the distances from the protonated sites to the carbonyl oxygens for the conformations suggested from IR and IM experiments. Structural assignment for the amyloid peptide is then made possible by the combination of these three experimental techniques that provide complementary information on the possible secondary structure adopted by peptides. Although globular conformations are favored for the doubly protonated peptide, incrementing the charge state leads to a conformational transition towards extended structures with 310- and α-helix motifs.   相似文献   

19.
Mass spectrometric structural analysis of crosslinked peptides is a powerful method to elucidate the spatial arrangement of polypeptides in protein complexes. Our aim is to develop bifunctional crosslinkers that, after crosslinking protein complexes followed by proteolytic digestion, give rise to crosslinked peptides that can be readily tracked down by mass spectrometry. To this end we synthesized the crosslinker N-benzyliminodiacetoyloxysuccinimid (BID), which yields stable benzyl cation marker ions upon low-energy collision-induced dissociation (CID) tandem mass spectrometry. Sensitive detection of the marker ion upon low-energy CID is demonstrated with different BID-crosslinked peptide preparations. With BID it becomes possible to retrieve crosslinked and crosslinker-adducted peptides, without the necessity of purifying crosslinked peptides prior to identification. The basic design of this crosslinker can be varied upon, in order to meet specific crosslinking needs.  相似文献   

20.
This account summarizes the energetics and dynamics of peptide fragmentation obtained using a new approach recently developed in our laboratory. The approach involves RRKM modeling of time- and energy- resolved tandem mass spectrometry (MS/MS) data obtained using collisional activation. We demonstrate that surface-induced dissociation (SID) on a long time-scale of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is perfectly suited for studying the energetics and dynamics of peptide fragmentation. The advantages provided by SID include very fast ion activation, which eliminates possible discrimination against higher-energy dissociation pathways, and efficient "amplification" of small changes in dissociation parameters. We present a summary of results obtained for small alanine-containing peptides as well as larger peptides including angiotensin analogs and a series of peptides containing the LDIFSDF motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号