首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiative transition in δ-doped GaAs superlattices with and without Al0.1Ga0.9As barriers is investigated by using photoluminescence at low temperatures. The experimental results show that the transition mechanism of δ-doped superlattices is very different from that of ordinary superlattices. Emission intensity of the transition from the electron first excited state to hole states is obviously stronger than that from the electron ground state to hole states due to larger overlap integral between wavefunctions of electrons in the first excited state and hole states. Based on the effective mass theory we have calculated the self-consistent potentials, optical transition matrix elements and photoluminescence spectra for two different samples. By using this model we can explain the main optical characteristics measured. Moreover, after taking into account the bandgap renormalization energy, good agreement between experiment and theory is obtained.  相似文献   

2.
This paper studies the dynamics of intra-acceptor hole relaxation in Be δ -doped GaAs/AlAs multiple quantum wells (MQW) with doping at the centre by time-resolved pump-probe spectroscopy using a picosecond free electron laser for infrared experiments. Low temperature far-infrared absorption measurements clearly show three principal absorption lines due to transitions of the Be acceptor from the ground state to the first three odd-parity excited states respectively. The pump-probe experiments are performed at different temperatures and different pump pulse wavelengths. The hole relaxation time from 2p excited state to 1s ground state in MQW is found to be much shorter than that in bulk GaAs, and shown to be independent of temperature but strongly dependent on wavelength. The zone-folded acoustic phonon emission and slower decay of the wavefunctions of impurity states are suggested to account for the reduction of the 2p excited state lifetime in MQW. The wavelength dependence of the 2p lifetime is attributed to the diffusion of the Be atom δ -layer in quantum wells.  相似文献   

3.
We construct a family of solutions of the holographic insulator/superconductor phase transitions with the excited states in the AdS soliton background by using both the numerical and analytical methods. The interesting point is that the improved SturmLiouville method can not only analytically investigate the properties of the phase transition with the excited states, but also the distributions of the condensed fields in the vicinity of the critical point. We observe that, regardless of the type of the holographic model, the excited state has a higher critical chemical potential than the corresponding ground state, and the difference of the dimensionless critical chemical potential between the consecutive states is around 2.4, which is different from the finding of the metal/superconductor phase transition in the Ad S black hole background. Furthermore, near the critical point, we find that the phase transition of the systems is of the second order and a linear relationship exists between the charge density and chemical potential for all the excited states in both s-wave and p-wave insulator/superconductor models.  相似文献   

4.
We theoretically investigate the electronic properties of p-type δ-doped GaAs inserted into a quantum well under the electric field, at T = 0 K. We will investigate the influence of the electric field on the δ-doping concentration for a uniform distribution. The depth of confining potential, the density profile, the Fermi level, the subband energies and the subband populations calculate by solving the Schrodinger and Poisson equations self consistently. It is found that the changes of the electronic properties are quite sensitive to the applied electric field and the doping concentration. As different from single n-type δ-doped structure, we see a replace between the ground light-hole (lh1 ) subband and the first excited heavy-hole (hh2) subband whenever the external electric field reaches a critical value. We find the abrupt changing of the subband energies and the subband populations whenever the applied electric field reaches a certain value. Also, it is found that the heavy-hole subbands contain many more energy states than the light-hole ones, the population of the heavy-hole levels represent approximately 91% of all the carriers.  相似文献   

5.
We theoretically investigate the contribution of the excited state to the ellipticity of the harmonics from H+ at different orientation angles irradiated by a linearly polarized laser pulse. It is found that the first excited state has a significant influence to the ellipticity of the harmonics, and the contribution of higher excited states to the ellipticity can be neglected. Moreover, the conclusion is not dependent on the laser intensity.  相似文献   

6.
徐家坤  陈海清  刘红平 《中国物理 B》2013,22(1):13204-013204
We calculate the diamagnetic spectrum of lithium at highly excited states up to the positive energy range using the exact quantum defect theory approach. The concerned excitation is one-photon transition from the ground state 2s to the highly excited states np with π and σ polarizations respectively. Lithium has a small quantum defect value 0.05 for the np states, and its diamagnetic spectrum is very similar to that of hydrogen in the energy range approaching the ionization limit. However, a careful calculation shows that the spectrum has a significant discrepancy with that of hydrogen when the energy is lower than 70cm-1 . The effect of the quantum defect is also discussed for the Stark spectrum. It is found that the σ transition to the np states in an electric field has a similar behavior to that of hydrogen due to zero interaction with channel ns.  相似文献   

7.
We theoretically investigate the effects of different electronic states as the initial state on the vortex patterns in photoelectron momentum distributions(PMDs)from numerical solutions of the two-dimensional(2D)time-dependent Schrodinger equation(TDSE)of He+with a pair of counter-rotating circularly polarized attosecond pulses.It is found that the number of spiral arms in vortex patterns is equal to the number of the absorbed photons when the initial state is the ground state.However,the number of spiral arms in vortex patterns is always two more than the number of the absorbed photons when the initial state is the excited state.This sensitivity is attributed to the initial electron density distribution.In addition,we have demonstrated the PMDs for different initial electronic states with the same wavelengths and analyzed their corresponding physical mechanisms.It is illustrated that the method presented can be employed to effectively control the distribution of the electron vortices.  相似文献   

8.
Two dimethylamino-carbaldehyde derivatives with different π-bridge lengths were prepared, and their transient optical properties and photophysical mechanisms were investigated by transient absorption spectroscopy and Z-scan measurements. Owing to the difference in molecular structures, the two compounds exhibit different populations of locally excited states and, therefore, they also produce different transient absorption spectra. After photoexcitation, both molecular materials exhibit a wide excited state absorption band from 450 nm to 1000 nm. Meanwhile, the excited state lifetimes are dramatically different, 2 ns and 100 ps, for the two molecules. A figure of merit greater than 2 at the wavelength of1000 nm is obtained. The results show that modulating the population of the locally excited states in this type of molecule can be a promising approach for obtaining optical switching and solar cell materials.  相似文献   

9.
Spiral wave could be observed in the excitable media, the neurons are often excitable within appropriate parameters. The appearance and formation of spiral wave in the cardiac tissue is linked to monomorphic ventricular tachycardia that can denervate into polymorphic tachycardia and ventricular fibrillation. The neuronal system often consists of a large number of neurons with complex connections. In this paper, we theoretically study the transition from spiral wave to spiral turbulence and homogeneous state (death of spiral wave) in two-dimensional array of the Hindmarsh-Rose neuron with completely nearest-neighbor connections. In our numerical studies, a stable rotating spiral wave is developed and selected as the initial state, then the bifurcation parameters are changed to different values to observe the transition from spiral wave to homogeneous state, breakup of spiral wave and weak change of spiral wave, respectively. A statistical factor of synchronization is defined with the mean field theory to analyze the transition from spiral wave to other spatial states, and the snapshots of the membrane potentials of all neurons and time series of mean membrane potentials of all neurons are also plotted to discuss the change of spiral wave. It is found that the sharp changing points in the curve for factor of synchronization vs. bifurcation parameter indicate sudden transition from spiral wave to other states. And the results are independent of the number of neurons we used.  相似文献   

10.
We study the photoluminescence (PL) and the PL dynamics of Ir(PPY)3-doped poly(N-vinylcarbazol) (PVK) under the modulation of an electric field. Tile results show that the electric-field-induced quenching of PL from Ir(PPY)3-doped PVK mainly comes from the dissociation of excitons in the chains of PVK. There is no significant difference in the excited state lifetime of Ir(PPY)3 to be observed under the different applied negative biases.Our experiments demonstrate that the excitons attached to the molecules of lr(PPY)3 are very stable.  相似文献   

11.
We study high-order harmonic generation (HHG) in an intense laser pulse when the initial state is prepared as a coherent superposition of the ground and first excited states. By examining the populations of these states for different laser intensity regions, the role of the excited state in the harmonic generation process can be identified. We also find that high conversion etticiency and high cutoff frequency of HHG can be achieved if the intensity of the laser pulse is high enough to cause considerable ionization of the first excited state but not sufficient to ionize the ground state.  相似文献   

12.
胡利云  王帅  张智明 《中国物理 B》2012,21(6):64207-064207
Using the entangled state representation, we convert a two-mode squeezed number state to a Hermite polynomial excited squeezed vacuum state. We first analytically derive the photon number distribution of the two-mode squeezed thermal states. It is found that it is a Jacobi polynomial; a remarkable result. This result can be directly applied to obtaining the photon number distribution of non-Gaussian states generated by subtracting from (adding to) two-mode squeezed thermal states.  相似文献   

13.
The electronic structures of BaMgF4 crystals containing an F colour centre are studied within the framework of the fully relativistic self-consistent Direc-Slater theory, using a numerically discrete variational (DV-Xα) method. It is concluded from the calculated results that the energy levels of the F colour centre are located in the forbidden band. The optical transition energy from the ground state to the excited state for the F colour centre is about 5.12 eV, which corresponds to the 242-nm absorption band. These calculated results can explain the origin of the absorption bands.  相似文献   

14.
A classically chaotic system consisting of a Paul trapped ion and a sequences of standing laser pulses is treated quantum-mechanically. Under the circumstance of time-dependence, we derive the transition probability from the ion‘s motional state n to n‘, and find, in the first-order approximation, the classically chaotic character disappears.Theoretical analysis and numerical calculations show that by regulating the phase parameter φ we can control the transition probability. When φ reaches some specific values, the transition from the state n to n‘ is forbidden and, for some laser periods, resonance occurs, which leads to the corresponding transitions between different motional states.  相似文献   

15.
We discuss recent progress in extracting the excited meson spectrum and radiative transition form factors from lattice QCD.We mention results in the charmonium sector,including the first lattice QCD calculation of radiative transition rates involving excited charmonium states,highlighting results for high spin and exotic states.We present recent results on a highly excited isovector meson spectrum from dynamical anisotropic lattices.Using carefully constructed operators we show how the continuum spin of extracted states can be reliably identified and confidently extract excited states,states with exotic quantum numbers and states of high spin.This spectrum includes the first spin-four state extracted from lattice QCD.We conclude with some comments on future prospects.  相似文献   

16.
The x-ray energies and transition rates associated with single and double electron radiative transitions from the double K hole state 2s2p to the 1s2s and 1s^2 configurations of 11 selected He-like ions(10 ≤ Z ≤ 47) are calculated using the fully relativistic multi-configuration Dirac–Fock method(MCDF). An appropriate electron correlation model is constructed with the aid of the active space method, which allows the electron correlation effects to be studied efficiently. The contributions of the electron correlation and the Breit interaction to the transition properties are analyzed in detail. It is found that the two-electron one-photon(TEOP) transition is correlation sensitive. The Breit interaction and electron correlation both contribute significantly to the radiative transition properties of the double K hole state of the He-like ions. Good agreement between the present calculation and previous work is achieved. The calculated data will be helpful to future investigations on double K hole decay processes of He-like ions.  相似文献   

17.
Using relativistic mean field theory, the neutron and the proton density distribution of 56Ni nuclei could be obtained in the ground state and the excited state. Based on the framework of the quantum molecular dynamics model, the 56Ni nuclei have been simulated in ground state and in the neutron or proton excited state. We then used the three different states of 56Ni to collide with the 56Ni in the ground state. To discuss the evolution of the nuclear stopping in different reactions, two kinds of different excited nuclear reactions were studied at different reaction energies and at different impact parameters. Studies have shown that the nuclear stopping of an excited nuclear reaction is sensitive to the isospin-dependent in-medium nucleon-nucleon cross section, compared with the response value of the ground state nuclear reaction. So, it is better for the excited nuclei to extract the isospin dependence of nucleon-nucleon cross section information.  相似文献   

18.
We investigate theoretically the ionization properties of the valence electron for the alkali metal atom Na in an intense pulsed laser field by solving numerically the time-dependent Schr ¨odinger equation with an accurate l-dependent model potential.By calculating the variations of the ionization probabilities with laser peak intensity for wavelengths ranging from 200 nm to 600 nm,our results present a dynamic stabilization trend for the Na atom initially in its ground state(3 s) and the excited states(3 p and 4 s) exposed to an intense pulsed laser field.Especially a clear "window" of dynamic stabilization at lower laser intensities and longer wavelengths for the initial state 4 s(the second excited state) is found.By analyzing the time-dependent population distributions of the valence electron in the bound states with the different values of principal quantum number n and orbital quantum number l,we can attribute the dynamic stabilization to the periodic population in the low-excited states since the valence electron oscillates rapidly between the lowly excited states and the continuum states.  相似文献   

19.
李燕  贾欣燕  杨世平  李卫东  陈京 《中国物理 B》2010,19(6):63302-063302
The orientation-dependent single ionization rate of the diatomic molecular ion H_2^+ with different active orbitals in an intense field is studied by using S-matrix theory. Our results show that the orientation-dependent single ionization probability of H_2^+ is greatly dependent on the symmetry and the electron density distribution of its initial states, and it can be used to identify the excited state of the molecular ion in the dissociation process.  相似文献   

20.
We study the energy levels of an electron (or hole) polaron in a parabolic quantum well structure,including the spatial dependence of the effective mass.We also consider the two-mode behaviour of longitudinal optical phonon modes of the ternary mixed crystals in the structure,in the calculation of the effect of the electron phonon interaction.We calculate the ground state,the first excited state and the transition energy of an electron (or hole) in the GaAs/AlxGa1-xAs parabolic quantum well structure.The numerical results show that the electron-phonon interaction obviously affects the energy levels of the electron (or hole),which are in agreement with experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号