首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A closed form expression for the local density of electromagnetic states (LDOS) due to a thermally emitting metamaterial bulk is derived from Maxwell's equations combined with fluctuational electrodynamics. The final form is the same as that for nonmagnetic materials, where the influence of the magnetic permeability is embedded in the Fresnel reflection coefficients. Spectral distributions of LDOS near metallic- and dielectric-based metamaterials are investigated. Results reveal that LDOS profiles are dominated by surface polaritons (SPs) in both TE and TM polarization states. A detailed discussion is provided on the necessary conditions for exciting TM- and TE-polarized SPs via a dispersion relation analysis that accounts for losses. Beyond the conventional conditions for excitation of SPs, the lossy dispersion relation analysis demonstrates mathematically that SPs exist when the imaginary parts of the permittivity or permeability, as well as nn″, are close to zero, where n′ and n″ are the real and imaginary parts of the refractive index, respectively. An asymptotic expression for the extreme near field LDOS is derived, showing a Δ?3 power law relationship, as for nonmagnetic media, between LDOS and distance from the emitting bulk Δ. Results obtained from this study will assist in assessing material properties of arbitrarily electromagnetic materials in applications related to energy harvesting.  相似文献   

2.
The propagation characteristics of electromagnetic wave in lossy left-handed materials (LHM) are studied using finite-difference time-domain (FDTD) method base on auxiliary differential equation (ADE) technology. The LHM medium is realized with lossy Drude models for both the negative electric permittivity and the negative magnetic permeability. The discretized ADE-FDTD equations are derived in detail. The incident wave used in the simulation is a multiple cycle m-n-m pulses source. The term of Poynting's vector ExHy was calculated. These numerical results demonstrate conclusively that the phase velocity direction of electromagnetic wave propagation and the direction of the Poynting vectors are anti-parallel in LHM. The amplitude of electric field is reduced with the enhancive distance of LHM slab. It is also demonstrated that the energy of electromagnetic wave in the LHM slab is obviously attenuated, and the attenuation of energy becomes stronger with the angular plasma frequency ωp increasing. These results indicate that LHM stealth is effective in theory, and reasonable selection of the large negative index of refraction can greatly enhance its effectiveness.  相似文献   

3.
C Van Vlack  S Hughes 《Optics letters》2012,37(14):2880-2882
The calculation of the local density of states (LDOS) in lossy materials has long been disputed due to the divergence of the homogeneous Green function with equal space arguments. For arbitrary-shaped lossy structures, such as those of interest in nanoplasmonics, this problem is particularly challenging. A nondivergent LDOS obtained in numerical methods such as the finite-difference time-domain (FDTD) technique, at first sight appears to be wrong. Here we show that FDTD is not only an ideal choice for obtaining the regularized LDOS, but it can address the local-field problem for any lossy inhomogeneous material. We exemplify the case of a finite-size photon emitter (e.g., a single quantum dot) embedded within and outside a lossy metal nanoparticle and show excellent agreement with analytical results.  相似文献   

4.
We defend a natural division of the energy density, energy flux and momentum density of electromagnetic waves in linear media in electromagnetic and material parts. In this division, the electromagnetic part of these quantities have the same form as in vacuum when written in terms of the macroscopic electric and magnetic fields, the material momentum is calculated directly from the Lorentz force that acts on the charges of the medium, the material energy is the sum of the kinetic and potential energies of the charges of the medium and the material energy flux results from the interaction of the electric field with the magnetized medium. We present reasonable models for linear dispersive non-absorptive dielectric and magnetic media that agree with this division. We also argue that the electromagnetic momentum of our division can be associated with the electromagnetic relativistic momentum, inspired on the recent work of Barnett [Phys. Rev. Lett. 104 (2010) 070401] that showed that the Abraham momentum is associated with the kinetic momentum and the Minkowski momentum is associated with the canonical momentum.  相似文献   

5.
We study the energy characteristics of fields radiated from electric, magnetic, and toroidal dipoles in a nondispersive medium moving with velocity lower than the speed of light in this medium. The angular dependences of Abraham's energy-flux density of electromagnetic field are analyzed. In particular, it is shown that if the medium velocity is high enough, then the radial component of the vector of energy-flux density is negative in a certain angular range. Expressions for the electromagnetic energy flux through a sphere of large radius are obtained. It is shown that if the velocity of a moving medium is high enough, then the energy flux is negative and its absolute value can exceed the energy losses of sources.  相似文献   

6.
The problem of reconstructing the spatial support of an extended radiating electric current source density in a lossy dielectric medium from transient boundary measurements of the electric fields is studied. A time reversal algorithm is proposed to localize a source density from loss-less wave-field measurements. Further, in order to recover source densities in a lossy medium, we first build attenuation operators thereby relating loss-less waves with lossy ones. Then based on asymptotic expansions of attenuation operators with respect to attenuation parameter, we propose two time reversal strategies for localization. The losses in electromagnetic wave propagation are incorporated using the Debye's complex permittivity, which is well-adopted for low frequencies (radio and microwave) associated with polarization in dielectrics.  相似文献   

7.
《Physics letters. A》1987,121(1):19-24
The structure of the energy density of the virtual electromagnetic field surrounding a ground-state hydrogen atom is discussed in the framework of nonrelativistic QED. Both the electric and the magnetic part of this energy density are analysed in terms of a shell structure, similar to that previously proposed for the coarse grained energy density W(r). The physical meaning of this shell structure is discussed. It is suggested that, differently from W(r), the energy density investigated here can be measured experimentally, and it is shown that it is rich of detailed information about the dynamical structure of the source atom.  相似文献   

8.
Combined effects of magnetic and electric fields on the confined exciton in an InAs1−xPx/InP (x=0.2) quantum well wire are investigated taking into account the geometrical confinement effect. Variational formulism, within the frame work of effective mass approximation, is applied to obtain the exciton binding energy. The second order harmonic generation and the optical gain are carried out using compact density method. The strain effects are included with the confinement potential in the Hamiltonian. The energy difference of the ground and the first excited state is found in the presence of magnetic and electric fields taking into the consideration of spatial confinement effect. The result shows that the optical properties are more influenced taking into account the effects of geometrical confinement, magnetic field and electric field. It is shown that the telecommunication wavelength can be achieved with the suitable doping barrier material with the wire material and the external perturbations.  相似文献   

9.
On Reflection and Transmission of Electromagnetic Waves Propagating Perpendicular to Plane Surfaces between Different Absorbing Media Born and Ladenburg already in 1911 pointed out that to describe reflection and transmission of electromagnetic waves through a plane surface between two different absorbing media in addition to the usual Poynting vectors of the running waves the so called “mixed” Poynting vector is necessary to maintain the balance of energy on the boundary plane. The flow of energy connected with this vector always points toward the region of maximal wastage of this energy and is closely related to the spatial modulation of the energy consumption within the partially standing interference pattern between the incoming and the reflected wave. In almost all substances the energy absorption is caused by the electric field whereas practically a direct contribution from the magnetic field can be neglected. But taking account of these magnetic effects we may get a better understanding of the mixed Poynting vector. To that end we add to the second of the Maxwell equations a quantity analogous to the electric current term in the first Maxwell equation. The amplitude of the “mixed” Poynting vector then turns out to depend essentially on the ratio of the energy absorption by the electric and the magnetic field. To confirm this fact we consider a medium, which shows in addition to the usual electric losses also magnetic ones of comparable magnitudes. In such materials the resultant energy consumption is distributed more similar to the spatial distribution of the fieldenergy. As a result the amplitude of the mixed Poynting vector disappears if the percentage of energy absorption by the electric and the magnetic field and their energy densities themselves are made equal to each other.  相似文献   

10.
A combinative method of variational wavefunction and harmonic oscillator operator algebra, the ground-state energy correction to an electron confined in the quantum well of GaAs/Ga1-xAlx, As in the electric and magnetic fields along the growth axis has been studied by taking into account the interaction of different optical phonon modes with the electron. The ground-state energy is obtained as a function of the well width and the strength of electric and magnetic fields. The results show that the magnetic field greatly enhances the in terface-phonon part of the polaronic correction to electron ground-state energy in the well width d ≤ 300 Å. The electric field also enhances the polaron effect of interface mode, but decreases the part of bulk longitudinal mode.  相似文献   

11.
Propagation characteristics of a high-power electromagnetic wave through an inhomogeneous magnetized plasma is investigated. Considering the momentum transfer equations for electrons and ions and taking into account the ponderomotive force, the distribution of electron density and dielectric permittivity are obtained. Using non-linear dielectric permittivity and Maxwell's equations in the absence of external current and charge densities, non-linear wave equations are achieved. The results indicate that the external static magnetic field can modify the profiles of both the electric and magnetic fields. It is also shown that the external static magnetic field enhances the amplitude of the electron density and the non-linear dielectric permittivity.  相似文献   

12.
The concept of a perfect electromagnetic conductor (PEMC) was introduced to generalize and unify two well-known and apparently disjoint concepts in electromagnetics: the perfect electric conductor (PEC) and the perfect magnetic conductor (PMC). Although the PEMC has proven a fertile tool in electromagnetic analyses dealing with new and complex boundaries, its corresponding definition as a medium has, nevertheless, raised several problems. In fact, according to its initial 3D definition, the PEMC cannot be considered a unique and well-defined medium: it leads to extraneous fields without physical meaning. By using a previously published generalization of a PEMC that regards this concept both as a boundary and as a medium – which was dubbed an MIM (Minkowskian isotropic medium) and acts, in practice, as an actual electromagnetic conductor (EMC) – it is herein presented a straightforward analysis of waveguides containing PEMCs that readily and systematically follows from the general framework of waveguides containing EMCs.  相似文献   

13.
The electric field properties of the electric line source radiation in the presence of a lossy metamaterial covered dielectric cylinder are investigated. Firstly, the electromagnetic model configuration is given. The exact solution of the electromagnetic is presented. Secondly, the near field and the far field properties are investigated according to the electromagnetic and geometrical parameters. The different “focus” phenomenon, the directivities and the normalized radiation resistance are discussed and important conclusions are obtained. During all the numerical computation, the lossy conventional material covered dielectric cylinder is utilized as the reference.  相似文献   

14.
洪清泉  仲伟博  余燕忠  蔡植善  陈木生  林顺达 《物理学报》2012,61(16):160302-160302
在经典电动力学框架下对磁各向异性介质中的电磁辐射问题进行研究, 得到了电偶极子在磁各向异性介质中的辐射功率表达式. 当介质为磁各向同性时其结果与文献报道的结果相符合, 验证了推导结果的正确性. 利用本文结果可对电偶极子在磁各向异性介质中的辐射效果做出判断, 而且对于进一步研究磁各向异性介质的电磁特性、更有效地开发利用磁各向异性介质具有实际意义.  相似文献   

15.
We consider disintegration of deuteron by low energy neutrinos or antineutrinos due to their electromagnetic form factors. Effects of magnetic or electric dipole moments, electric charge radii and anapole moments of neutrinos are taken into account.  相似文献   

16.
We have investigated the plasmonic resonance characteristics of canonical circular and square cylinders, with gap defects, that are illuminated by a plane wave. The circular and square cylinders have vee shaped gaps and constant width gaps, respectively. The electric and magnetic fields are obtained by solving the Lippmann–Schwinger equation from which we compute the far-field scattering cross-section and near-field local electromagnetic energy density.Numerical results are given for numerous wavelength and gap dimensions to qualitatively present the effects of gap defects on the scattering cross-section and local electromagnetic energy density.  相似文献   

17.
The interaction of a circularly polarized electromagnetic wave with a switched-on magnetoplasma medium is considered. A static magnetic field in the direction of propagation is assumed to be present, resulting in longitudinal propagation. The incident wave splits into three waves whose frequencies are different from that of the incident wave. It is shown that these waves ultimately damp out if the plasma is even slightly lossy. The damping of the waves is interpreted in terms of their attenuation with distance and decay with time as they propagate in the lossy plasma. The attenuation-length and decay-time constants of the waves are obtained, and their dependence on the incident-wave frequency and the gyrofrequency is examined. Optimum parameters for an experiment to detect these waves are suggested  相似文献   

18.
The heat-photon conversion phenomenon can be used to obtain a thermal image of an electromagnetic field. The electromagnetic field is partially absorbed by a sensitive paint or by a coating deposited on structures or on thin films. A map of the temperature increase of this absorbing medium is an image of the electric or magnetic intensity field distribution, depending on the electric and magnetic properties of the medium. A brief history of the various techniques used to obtain thermal images of electromagnetic fields is first presented. Emphasis is then put on infrared thermography which has been preferentially used in the past 20 years. An analysis of the thermal problems involved is presented. It appears that the solution to these problems is the key for the enhancement of the technique and for really quantitative work. Original solutions have been developed at ONERA, based on the combined use of optimised thin films with controlled electric conductivity, very sensitive infrared cameras, lock-in infrared thermography, and microwave interferometry. In these conditions, quantitative images of both amplitude and phase are obtained. Such an electromagnetic field imaging technique is a powerful tool which has no equivalent and which can be used for several types of applications such as: i) antenna radiation pattern characterization; ii) mode propagation characterization in waveguides; iii) study of absorption phenomena in complex materials; iv) nondestructive evaluation of dielectric structures (electromagnetic windows) or radar absorbing materials; v) knowledge of surface currents distribution on metallic structures.  相似文献   

19.
《Physics letters. A》2005,339(6):488-496
The local density of states (LDOS) in a ferromagnet (FM)/superconductor (SC) bilayer is obtained by using the Nambu Green's function approach. Besides the transition from the “0” state to “π” state found in the spatial variation of the LDOS in the FM, the dependence of the LDOS spectrum on the thicknesses of the FM and SC is also investigated. It is shown that the LDOS in a thin FM film in contact to the SC shows a strong superconducting feature suggesting the possible coexistence of the ferromagnetism and s-wave superconductivity induced by the proximity effects.  相似文献   

20.
Electromagnetic phenomena can be described by Maxwell equations written for the vectors of electric and magnetic field. Equivalently, electrodynamics can be reformulated in terms of an electromagnetic vector potential. We demonstrate that the Schrödinger equation admits an analogous treatment. We present a Lagrangian theory of a real scalar field φ whose equation of motion turns out to be equivalent to the Schrödinger equation with time independent potential. After introduction the field into the formalism, its mathematical structure becomes analogous to those of electrodynamics. The field φ is in the same relation to the real and imaginary part of a wave function as the vector potential is in respect to electric and magnetic fields. Preservation of quantum-mechanics probability is just an energy conservation law of the field φ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号