首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
Measurement of osmotic coefficients of binary mixtures containing several primary and secondary alcohols (1-propanol, 2-propanol, 1-butanol, 2-butanol, and 1-pentanol) and the pyridinium-based ionic liquid 1,3-dimethylpyridinium methylsulfate were performed at T = 323.15 K using the vapor pressure osmometry technique, and from experimental data, vapor pressure, and activity coefficients were determined. The extended Pitzer model modified by Archer, and the NRTL model modified by Jaretun and Aly (MNRTL) were used to correlate the experimental osmotic coefficients, obtaining standard deviations lower than 0.017 and 0.054, respectively. From the parameters obtained with the extended Pitzer model modified by Archer, the mean molal activity coefficients and the excess Gibbs free energy for the studied binary mixtures were calculated. The effect of the cation is studied comparing the experimental results with those obtained for the ionic liquid 1,3-dimethylimidazolium methylsulfate.  相似文献   

2.
The osmotic and activity coefficients and vapour pressures of binary mixtures containing 1-propanol, or 2-propanol and imidazolium-based ionic liquids with bis(trifluoromethylsulfonyl)imide as anion (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, C2MimNTf2, 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide, C3MimNTf2, and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, C4MimNTf2) were determined at T = 323.15 K using the vapour pressure osmometry technique. The experimental osmotic coefficients were correlated using the extended Pitzer model modified by Archer and the MNRTL model, obtaining standard deviations lower than 0.033 and 0.064, respectively. The mean molal activity coefficients and the excess Gibbs free energy for the mixtures studied were calculated from the parameters of the extended Pitzer model modified by Archer. Besides the effect of the alkyl-chain of the cation, the effect of the anion can be assessed comparing the experimental results with those previously obtained for imidazolium ionic liquids with sulphate anions.  相似文献   

3.
Measurements of osmotic coefficients of BMimMSO4 (1-butyl-3-methylimidazolium methylsulfate) and MMimMSO4 (1,3-dimethylimidazolium methylsulfate) with ethanol, 1-propanol, and 2-propanol at T = 323.15 K are reported in this work. Vapour pressure and activity values for the binary systems studied are obtained from experimental results. The osmotic coefficients are correlated using the extended Pitzer model modified by Archer and the modified NRTL (MNRTL) model. The standard deviations obtained with both models are lower than 0.013 and 0.060, respectively. The parameters obtained with the extended Pitzer model of Archer are used to calculate the mean molal activity coefficients and the excess Gibbs free energy of the binary mixtures.  相似文献   

4.
In this work, physical properties (densities and speeds of sound) for the binary systems {1-propanol, or 2-propanol, or 1-butanol, or 2-butanol, or 1-pentanol + 1-butyl-3-methylimidazolium trifluoromethanesulfonate} were experimentally measured from T = (293.15 to 323.15) K and at atmospheric pressure. These data were used to calculate the apparent molar volume and apparent molar isentropic compression which were fitted to a Redlich–Meyer type equation. This fit was used to obtain the corresponding apparent molar properties at infinite dilution. On the other hand, the osmotic and activity coefficients and vapor pressures of these binary mixtures were also determined at T = 323.15 K using the vapor pressure osmometry technique. The Extended Pitzer model of Archer was employed to correlate the experimental osmotic coefficients. From the parameters obtained in the correlation, the mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures were calculated.  相似文献   

5.
Vapour pressures of (1-chlorobutane  +  1-butanol, or 2-methyl-2-propanol) at several temperatures between T =  278.15 and T =  323.15 K were measured by a static method. Reduction of the vapour pressures to obtain activity coefficients and excess molar Gibbs energies was carried out by fitting the vapour pressure data to the Redlich–Kister equation according to Barker’s method. For (1-chlorobutane  +  2-methyl-2-propanol) azeotropic mixtures with a minimum boiling temperature were observed over the whole temperature range.  相似文献   

6.
Measurements of osmotic coefficients of BmimCl (1-butyl-3-methylimidazolium chloride) and HmimCl (1-hexyl-3-methylimidazolium chloride) with ethanol and EmimEtSO4 (1-ethyl-3-methylimidazolium ethylsulfate) and EmpyEtSO4 (1-ethyl-3-methylpyridinium ethylsulfate) with water at T = (313.15 and 333.15) K are reported in this work. Vapour pressure and activity results of the studied binary systems are obtained from experimental measurements. The results for the osmotic coefficients are correlated using the extended Pitzer model modified by Archer and the modified NRTL (MNRTL) model. The standard deviations obtained with both models are also given. The parameters obtained with the extended Pitzer model of Archer are used to calculate the mean molal activity coefficients.  相似文献   

7.
The isothermal and isobaric (vapour  +  liquid) equilibria (v.l.e.) for (N, N - dimethylformamide  +  2-propanol  +  1-butanol) and the binary constituent mixtures were measured with an inclined ebulliometer. The experimental results are analyzed using the UNIQUAC equation with temperature-dependent binary parameters. The comparison between the experimental and literature results for binary systems is given. The ternary v.l.e. values are predicted from the binary results.  相似文献   

8.
Density data for dilute aqueous solutions of 1-butanol, 2-butanol, 2-methyl-1-propanol (iso-butanol), and 2-methyl-2-propanol (tert-butanol) are presented together with partial molar volumes at infinite dilution calculated from the experimental data. The measurements were performed at temperatures from T = 298.15 K up to T = 573.15 K and at pressure close to the saturated vapour pressure of water, at pressures close to p = 20 MPa and p = 30 MPa. The data were obtained using a high-temperature high-pressure flow vibrating-tube densimeter.  相似文献   

9.
《Fluid Phase Equilibria》2005,233(2):123-128
Isobaric vapor–liquid equilibria for the binary mixtures of tert-butanol (TBA) + 2-ethyl-1-hexanol and n-butanol (NBA) + 2-ethyl-1-hexanol were experimentally investigated at atmospheric pressure in the temperature range of 353.2–458.2 K. The raw experimental data were correlated using the UNIQUAC and NRTL models and used to estimate the interaction parameters between each pair of components in the systems. The experimental activity coefficients were obtained using the gas chromatographic method and compared with the calculated data obtained from these equilibrium models. The results show that UNIQUAC model gives better correlation than NRTL for these binary systems. The liquid–liquid extraction of TBA from aqueous solution using 2-ethyl-1-hexanol was demonstrated by simulation and the variation of separation factor of TBA at several temperatures was reported.  相似文献   

10.
Physico-chemical properties viz., density, viscosity, and refractive index at temperatures = (298.15, 303.15, and 308.15) K and the speed of sound at T = 298.15 K are measured for the binary mixtures of methylcyclohexane with ethanol, propan1-ol, propan-2-ol, butan-1-ol, 2-methyl-1-propanol, and 3-methyl-1-butanol over the entire range of mixture composition. From these data, excess molar volume, deviations in viscosity, molar refraction, speed of sound, and isentropic compressibility have been calculated. These results are fitted to the polynomial equation to derive the coefficients and standard errors. The experimental and calculated quantities are used to study the nature of mixing behaviours between the mixture components.  相似文献   

11.
Viscosities, densities, and speed of sound have been measured over the whole composition range for (methylcyclopentane with ethanol, 1-propanol, 1-butanol, 2-propanol, 2-butanol, and 2-pentanol) at T = (293.15, 298.15, and 303.15) K and atmospheric pressure along with the properties of the pure components. Excess molar volumes, isentropic compressibility, deviations in isentropic compressibility, and viscosity deviations for the binary systems at the above-mentioned temperatures were calculated and fitted to Redlich–Kister equation to determine the fitting parameters and the root-mean square deviations. UNIQUAC equation was used to correlate the experimental data. Dynamic viscosities of the binary mixtures have been predicted using UNIFAC-VISCO and ASOG-VISCO methods.  相似文献   

12.
Precise vapor pressure data for pure acetonitrile and (LiBr + acetonitrile) are given for temperatures ranging from T=(298.15 to 343.15) K. The molality range is from m=(0.0579 to 0.8298) mol · kg−1. The osmotic coefficients are calculated by taking into account the second virial coefficient of acetonitrile. The parameters of the extended Pitzer ion interaction model of Archer and the mole fraction-based thermodynamic model of Clegg–Pitzer are evaluated. These models accurately reproduce the available osmotic coefficients. The parameters of the extended Pitzer ion interaction model of Archer are used to calculate the mean molal activity coefficients.  相似文献   

13.
The (vapour + liquid) equilibrium (VLE) and boiling temperature measurements have been determined at 95.3 kPa as a function of composition for the binary liquid mixtures of N-methyl-2-pyrrolidone (NMP) with branched alcohols using a Swietoslawski-ebulliometer. The branched alcohols include 2-propanol, 2-butanol, 2-methyl-l- propanol, 2-methyl-2-propanol, and 3-methyl-l-butanol. The experimental temperature-composition (Tx) results were used to estimate Wilson parameters and then used to calculate the equilibrium vapour compositions and the excess Gibbs free energy at T = 298.15 K. The experimental temperature-composition (T, x) results were correlated with the Wilson, the NRTL and the UNIQUAC models. The experimental results are interpreted in terms of intermolecular interactions between constituent molecules.  相似文献   

14.
Densities of binary mixtures of N-(2-hydroxyethyl)morpholine with ethanol, 1-propanol, 2-propanol, 1-butanol, and 2-butanol were measured over the entire composition range at temperatures from (293.15 to 323.15) K and atmospheric pressure using a vibrating-tube densimeter. The excess molar volumes, VE were calculated from density data and fitted to the Redlich–Kister polynomial equation. Apparent molar volumes, partial molar volume at infinite dilution and the thermal expansion coefficient of the mixtures were also calculated. The VE values were found to be negative over the entire composition range and at all temperatures studied and become less negative with increasing carbon chain length of the alkanols.  相似文献   

15.
In this paper, densities and speeds of sound for five binary systems {alcohol + 1-butyl-3-methylimidazolium dicyanamide} were measured from T = (293.15 to 323.15) K and atmospheric pressure. From these experimental data, apparent molar volume and apparent molar isentropic compression have been calculated and fitted to a Redlich–Meyer type equation. This fit was also used to calculate the apparent molar volume and apparent molar isentropic compression at infinite dilution for the studied binary mixtures. Moreover, the osmotic and activity coefficients and vapor pressures of these binary mixtures were also determined at T = 323.15 K using the vapor pressure osmometry technique. The experimental osmotic coefficients were correlated using the Extended Pitzer model of Archer. The mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures were calculated from the parameters obtained in the correlation.  相似文献   

16.
Isothermal (vapour + liquid) equilibrium data, (VLE) have been measured by an ebulliometric method for the binary mixtures of ionic liquid (IL) {N-butyl-4-methylpyridinium tosylate (p-toluenesulfonate) [BMPy][TOS] + ethanol, 1-propanol, and 1-butanol} at T = 373.15 K over the pressure range from p = 0 kPa to p = 110 kPa. (Solid + liquid) phase equilibria (SLE) for the binary systems: ionic liquid (IL) {N-butyl-4-methylpyridinium tosylate (p-toluenesulfonate) [BMPy][TOS] + ethanol and 1-propanol} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (320 to 390) K. For the binary systems containing alcohol, it was noticed that with increasing chain length of alcohol vapour pressure of the mixture and the solubility of the IL decreases. Well-known Wilson, NRTL, and UNIQUAC equations have been used to correlate simultaneously the experimental VLE and SLE data sets with the same parameters. The excess molar Gibbs free energy, GE function in general was negative in all systems at high temperature (VLE) and positive at low temperatures (SLE).  相似文献   

17.
The experimental densities for the binary or ternary systems were determined at T = (298.15, 303.15, and 313.15) K. The ionic liquid methyl trioctylammonium bis(trifluoromethylsulfonyl)imide ([MOA]+[Tf2N]) was used for three of the five binary systems studied. The binary systems were ([MOA]+[Tf2N] + 2-propanol or 1-butanol or 2-butanol) and (1-butanol or 2-butanol + ethyl acetate). The ternary systems were {methyl trioctylammonium bis(trifluoromethylsulfonyl)imide + 2-propanol or 1-butanol or 2-butanol + ethyl acetate}. The binary and ternary excess molar volumes for the above systems were calculated from the experimental density values for each temperature. The Redlich–Kister smoothing polynomial was fitted to the binary excess molar volume data. Virial-Based Mixing Rules were used to correlate the binary excess molar volume data. The binary excess molar volume results showed both negative and positive values over the entire composition range for all the temperatures.The ternary excess molar volume data were successfully correlated with the Cibulka equation using the Redlich–Kister binary parameters.  相似文献   

18.
The excess molar volumes and the partial molar volumes for (propionitrile + an alkanol) at T = 298.15 K and at atmospheric pressure are reported. The hydrogen bonding between the OH⋯NC groups are discussed in terms of the chain length of the alkanol. The alkanols studied are (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and 1-pentanol).The excess molar volume data was fitted to the Redlich–Kister equation The partial molar volumes were calculated from the Redlich–Kister coefficients.  相似文献   

19.
In this work, we present the experimental measurements of excess molar enthalpies for the binary systems of dibutyl ether with different isomers of pentanol: 1-pentanol, 2-pentanol, 3-pentanol, 3-methyl-2-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-methyl-2-butanol; all of them at T = (298.15 and 308.15) K and atmospheric pressure. Our goal was to determine the influence of the OH-group position on the different isomers of pentanol in the excess molar enthalpies of the binary systems studied. For this purpose we have analysed their experimental effective-reduced dipole moments. All values of excess molar enthalpies for the mixtures studied are positive whereas the results obtained for the effective-reduced dipole moments of the isomers of pentanol are similar.  相似文献   

20.
(Liquid + liquid) equilibrium (LLE) data for the ternary mixtures of {water (1) + phosphoric acid (2) + organic solvents (3)} were determined at T = 298.2 K and atmospheric pressure. The organic solvents were cyclohexane, 2-methyl-2-butanol (tert-amyl alcohol), and isobutyl acetate. All the investigated systems exhibit Type-1 behaviour of LLE. The immiscibility region was found to be larger for the (water + phosphoric acid + cyclohexane) ternary system. The experimental LLE results were correlated with the NRTL model, and the binary interaction parameters were obtained. The reliability of the experimental tie-line results was tested through the Othmer–Tobias and Bachman correlation equations. Distribution coefficients and separation factors were evaluated over the immiscibility regions and a comparison of the extracting capabilities of the solvents was made with respect to these factors. The experimental results indicate the superiority of cyclohexane as the preferred solvent for the extraction of phosphoric acid from its aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号