首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
在航空航天、船舶、石油管道和核电等领域,服役结构或部件在长期极端条件下运行,不可避免地会产生裂纹,因此,为研究含裂纹结构的准静态断裂行为,必须了解裂纹尖端附近区域的应力应变场特点.对于幂律材料裂纹构元,研究平面应变和平面应力条件下Ⅰ型裂纹尖端应力场的解析分布.基于能量密度等效和量纲分析,推导了能量密度中值点代表性体积单元(representative volume element, RVE)的等效应力解析方程,并定义其为应力因子,进而针对有限平面应变和平面应力紧凑拉伸(compact tension, CT)试样和单边裂纹弯曲(single edge bend, SEB)试样,以应力因子作为应力特征量,并构造用于表征裂尖等效应力等值线的蝶翅轮廓式和扇贝轮廓式三角特殊函数,提出描述幂律塑性条件下平面I型裂纹尖端应力场的半解析模型.该半解析模型形式简单,对CT和SEB试样的裂尖应力场的预测结果与有限元分析的结果比较表明,两者之间均密切吻合,模型公式可直接用于预测Ⅰ型裂纹尖端应力分布,方便于断裂安全评价和理论发展.  相似文献   

2.
In this paper, the fatigue and fracture properties of bovine dentin are evaluated usingin vitro experimental analyses. Double cantilever beam (DCB) specimens were prepared from bovine maxillary molars and subjected to zeroto-tension cyclic loads. The fatigue crack growth rate was evaluated as a function of the dentin tubule orientation using the Paris law. Wedge-loaded DCB specimens were also prepared and subjected to monotonic opening loads. Moiré interferometry was used to acquire the in-plane displacement field during stable crack growth, and the instantaneous wedge load and crack length were acquired to evaluate the crack growth resistance and crack tip opening displacement (CTOD) with crack extension. The rate of fatigue crack growth was generally larger for crack propagation occurring perpendicular to the dentin tubules. The Moiré fringe fields documented during monotonic crack growth exhibited non-linear deformation occurring within a confined region adjacent to the crack tip. Both the wedge load and CTOD response provided evidence that a fracture process zone contributes to energy dissipation during crack extension and that dentin exhibits a risingR-curve behavior. Results from this preliminary investigation are being used as a guide for an evaluation of the fatigue and fracture properties of human dentin.  相似文献   

3.
The asymptotic problem of a semi-infinite crack perpendicular to the poling direction in a ferroelectric ceramic subjected to combined electric and mechanical loading is analyzed to investigate effect of electric fields on fracture behavior. Electromechanical coupling induced by the piezoelectric effect is neglected in this paper. The shape and size of the switching zone is shown to depend strongly on the relative magnitude between the applied electric field and stress field as well as on the ratio of the coercive electric field to the yield electric field. A universal relation between the crack tip stress intensity factor and the applied intensity factors of stress and electric field under small-scale conditions is obtained from the solution of the switching zone. It is found that the ratio of the coercive electric field to the yield electric field plays a significant role in determining the enhancement or reduction of the crack tip stress intensity factor. The fracture toughness variation of ferroelectrics under combined electric and mechanical loading is also discussed.  相似文献   

4.
The strain gradient effect becomes significant when the size of fracture process zone around a crack tip is comparable to the intrinsic material lengthl, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dominant strain field is irrotational. For mode I plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist simultaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode II plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode II plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode I and mode II, because the present theory is based only on the rotational gradient of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient. The project supported by the National Natural Science Foundation of China (19704100), National Natural Science Foundation of Chinese Academy of Sciences (KJ951-1-20), CAS K.C. Wong Post-doctoral Research Award Fund and Post-doctoral Science Fund of China  相似文献   

5.
An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.  相似文献   

6.
在线弹性理论中,切口/裂纹结构尖端区域存在奇异应力场,数值方法不易求解。本文建立的扩展边界元法(XBEM)对围绕尖端区域位移函数采用自尖端径向距离 的渐近级数展开式表达,其级数项的幅值系数作为基本未知量,而外部区域采用常规边界元法离散方程。两者方程联立求解可获得切口和裂纹结构完整的位移和应力场。扩展边界元法具有半解析法特征,适用于一般的切口和裂纹结构应力场分析,其解可精细描述从尖端区域到整体结构区域的应力场。作者研制了扩展边界元法程序,文中给出了两个算例,通过计算结果分析,表明扩展边界元法求解切口和裂纹结构应力场的准确性和有效性。  相似文献   

7.
An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.  相似文献   

8.
在线弹性理论中,三维 V 形切口/裂纹结构尖端区域存在多重应力奇异性,常规数值方法不易求解. 本文提出和建立了三维扩展边界元法 (XBEM),用于分析三维线弹性 V 形切口/裂纹结构完整的位移和应力场. 先将三维线弹性 V 形切口/裂纹结构分为尖端小扇形柱和挖去小扇形柱后的外围结构. 尖端小扇形柱内的位移函数采用自尖端径向距离 $r$ 的渐近级数展开式表达,其中尖端区域的应力奇异指数、位移和应力特征角函数通过插值矩阵法获得. 而级数展开式各项的幅值系数作为基本未知量. 挖去扇形域后的外围结构采用常规边界元法分析. 两者方程联立求解可获得三维 V 形切口/裂纹结构完整的位移和应力场,包括切口/裂纹尖端区域精细的应力场. 扩展边界元法具有半解析法特征,适用于一般三维 V 形切口/裂纹结构完整位移场和应力场的分析,其解可精细描述从尖端区域到整体结构区域的完整应力场. 作者研制了三维扩展边界元法程序,文中给出了两个算例,通过计算结果分析,表明了扩展边界元法求解三维 V 形切口/裂纹结构完整应力场的准确性和有效性.  相似文献   

9.
李聪  牛忠荣  胡宗军  胡斌 《力学学报》2020,52(5):1394-1408
在线弹性理论中,三维 V 形切口/裂纹结构尖端区域存在多重应力奇异性,常规数值方法不易求解. 本文提出和建立了三维扩展边界元法 (XBEM),用于分析三维线弹性 V 形切口/裂纹结构完整的位移和应力场. 先将三维线弹性 V 形切口/裂纹结构分为尖端小扇形柱和挖去小扇形柱后的外围结构. 尖端小扇形柱内的位移函数采用自尖端径向距离 $r$ 的渐近级数展开式表达,其中尖端区域的应力奇异指数、位移和应力特征角函数通过插值矩阵法获得. 而级数展开式各项的幅值系数作为基本未知量. 挖去扇形域后的外围结构采用常规边界元法分析. 两者方程联立求解可获得三维 V 形切口/裂纹结构完整的位移和应力场,包括切口/裂纹尖端区域精细的应力场. 扩展边界元法具有半解析法特征,适用于一般三维 V 形切口/裂纹结构完整位移场和应力场的分析,其解可精细描述从尖端区域到整体结构区域的完整应力场. 作者研制了三维扩展边界元法程序,文中给出了两个算例,通过计算结果分析,表明了扩展边界元法求解三维 V 形切口/裂纹结构完整应力场的准确性和有效性.   相似文献   

10.
The crack tip fields are investigated for a cracked functionally graded material (FGM) plate by Reissner’s linear plate theory with the consideration of the transverse shear deformation generated by bending. The elastic modulus and Poisson’s ratio of the functionally graded plates are assumed to vary continuously through the coordinate y, according to a linear law and a constant, respectively. The governing equations, i.e., the 6th-order partial differential equations with variable coefficients, are derived in the polar coordinate system based on Reissner’s plate theory. Furthermore, the generalized displacements are treated in a separation-of-variable form, and the higher-order crack tip fields of the cracked FGM plate are obtained by the eigen-expansion method. It is found that the analytic solutions degenerate to the corresponding fields of the isotropic homogeneous plate with Reissner’s effect when the in-homogeneity parameter approaches zero.  相似文献   

11.
考虑材料的黏性效应建立了Ⅱ型动态扩展裂纹尖端的力学模型,假设黏性系数与塑性等效应变率的幂次成反比,通过分析使尖端场的弹、黏、塑性得到合理匹配,并给出边界条件作为扩展裂纹定解的补充条件,对理想塑性材料中平面应变扩展裂纹尖端场进行了弹黏塑性渐近分析,得到了不含间断的连续解,并讨论了Ⅱ型裂纹数值解的性质随各参数的变化规律.分析表明应力和应变均具有幂奇异性,对于Ⅱ型裂纹,裂尖场不含弹性卸载区.引入Airy应力函数,求得了Ⅱ型准静态裂纹尖端场的控制方程,并进行了数值分析,给出了裂纹尖端的应力应变场.当裂纹扩展速度(M→0)趋于零时,动态解趋于准静态解,表明准静态解是动态解的特殊形式.  相似文献   

12.
The variation of stress intensity factor along the thickness in a cracked transversely graded plate subjected to in plane bending is investigated in this study. A transversely graded plate having elastic modulus varying continuously along the thickness was prepared by embedding glass beads in epoxy resin. An edge crack in this plate was subjected to in plane bending and the crack tip displacement field on the surfaces of the plate was measured using digital image correlation (DIC). Using the recently reported asymptotic displacement fields for cracked transversely graded plates (Wadgaonkar, S.C., Parameswaran, V., 2009. Structure of near tip stress field and variation of stress intensity factor for a crack in a transversely graded material, Journal of Applied Mechanics 76 (1), 011014), the stress intensity factor (SIF) on the surfaces of the plate was calculated from the experimental data. The results of this part of the study indicated that the extent of variation of the SIF across the plate thickness is nearly the same as that of the elastic modulus. An expression to calculate the variation of the SIF through the plate thickness was developed assuming simple bending of the plate. The predicted variation of SIF was verified through finite element calculations. Further, the behavior of the SIF near the intersection of the crack front and the plate surfaces, the extent of dominance of the corner singular field and the exponent of the corner singularity were also investigated in detail. Finally, the effect of gradation strength and gradation type on the SIF was also studied.  相似文献   

13.
The problem of a stationary semi-infinite crack in an elastic solid with microstructures subject to remote classical KIII field is investigated in the present work. The material behavior is described by the indeterminate theory of couple stress elasticity developed by Koiter. This constitutive model includes the characteristic lengths in bending and torsion and thus it is able to account for the underlying microstructure of the material as well as for the strong size effects arising at small scales. The stress and displacement fields turn out to be strongly influenced by the ratio between the characteristic lengths. Moreover, the symmetric stress field turns out to be finite at the crack tip, whereas the skew-symmetric stress field displays a strong singularity. Ahead of the crack tip within a zone smaller than the characteristic length in torsion, the total shear stress and reduced tractions occur with the opposite sign with respect to the classical LEFM solution, due to the relative rotation of the microstructural particles currently at the crack tip. The asymptotic fields dominate within this zone, which however has limited physical relevance and becomes vanishing small for a characteristic length in torsion of zero. In this limiting case the full-field solution recovers the classical KIII field with square-root stress singularity. Outside the zone where the total shear stress is negative, the full-field solution exhibits a bounded maximum for the total shear stress ahead of the crack tip, whose magnitude can be adopted as a measure of the critical stress level for crack advancing. The corresponding fracture criterion defines a critical stress intensity factor, which increases with the characteristic length in torsion. Moreover, the occurrence of a sharp crack profile denotes that the crack becomes stiffer with respect to the classical elastic response, thus revealing that the presence of microstructures may shield the crack tip from fracture.  相似文献   

14.
研究了反平面机械载荷和面内电载荷作用下压电体中考虑表面效应时孔边双裂纹问题的断裂特征。基于Gurtin-Murdoch表面理论模型,通过构造映射函数,利用复势电弹理论获得了应力场和电位移场的闭合解答。给出了裂纹尖端应力强度因子、电位移场强因子和能量释放率的解析解。讨论了开裂孔洞几何参数和施加力电载荷对电弹场强因子和能量释放率的影响。  相似文献   

15.
The physical nature of a crack tip is not absolutely sharp but blunt with finite curvature. In this paper, the effects of crack-tip shape on the stress and deformation fields ahead of blunted cracks in glassy polymers are numerically investigated under Mode I loading and small scale yielding conditions. An elastic–viscoplastic constitutive model accounting for the strain softening upon yield and then the subsequently strain hardening is adopted and two typical glassy polymers, one with strain hardening and the other with strain softening–rehardening are considered in analysis. It is shown that the profile of crack tip has obvious effect on the near-tip plastic field. The size of near-tip plastic zone reduces with the increase of curvature radius of crack tip, while the plastic strain rate and the stresses near crack tip enhance obviously for two typical polymers. Also, the plastic energy dissipation behavior near cracks with different curvatures is discussed for both materials.  相似文献   

16.
Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic–viscoplastic constitutive relation with various hardening–softening–hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip.On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening(or softening–hardening) has a particularly strong effect on the near crack tip stress and deformation fields.  相似文献   

17.
The shape of the back-calculated stress-separation curves obtained from the in-situ fracture of first-year sea ice in the Arctic and Antarctic is convex, and radically different from those for concrete. In these tests, the process zone size changes with crack growth, but the nature of this change differs with the test conditions, load-control or displacement control. These results prompted a closer examination of the cohesive crack model using the simplest cracked configuration, a finite cohesive crack in an infinite elastic medium loaded in tension by a uniform stress at infinity. Different types of strain softening are examined: rectangular softening, linear softening, prescribed cohesive stresses, and prescribed cohesive crack-opening displacements. For each of these cases, crack nucleation is examined; close attention is paid to test control conditions, be they load-control or fixed-grip. The test control conditions alter the fracture, crack nucleation, crack growth, and process zone size behavior significantly. Accurate approximate solutions to linear softening are presented and examined.  相似文献   

18.
研究了含裂纹的弹性结构对声的散射作用,应用分配形有限元和边界元相结合的方法于含裂纹的结构声相互作用问题,利用二级分形有限元方法对含裂纹结构进行离散,这将使得自由度大为减少;使用边界元方法计算外域散射声场,这将自动满足无限远辐射边界条件,数值结果初步表明:(1)随着裂纹深度的增加,结构声耦合系统的共振频率将下降;(2)裂纹附近的声场所受的影响更为明显。  相似文献   

19.
The present attempt proposes a predictive approach of the fatigue crack growth (FCG) behavior of a lug-type joint used in an aeronautic context. The crack tip residual stress distribution and material dispersions are considered. The developed approach was implemented by coupling the Extended Finite Element Method (XFEM), the Residual Corrected Stress Intensity Factor (RC-SIF), developed by the authors, and the Monte Carlo simulation (MCS) method. The Lemaitre–Chaboche model, developed upon the ABAQUS commercial code, was considered for characterizing material behavior. The developed approach treats FCG life by considering the stochastic behavior of material parameters and the crack tip residual stress field during propagation. Comparing with experimental data, the proposed approach exhibits a good ability in evaluating the FCG reliability of a cracked lug-type joint subjected to different loading conditions. The iso-probabilistic PaN curves can be used as an efficient tool for ensuring the safety behavior of cracked components.  相似文献   

20.
乔洋  张盛  刘少伟  王猛 《实验力学》2020,(2):287-299
裂纹前端的断裂过程区是引起岩石非线性断裂及尺寸效应的主要原因。利用数字图像相关技术对砂岩开展了三点弯曲梁实验,获得观测区域高精度的全场位移和应变数据,根据断裂韧带区域水平位移和水平应变的分布特征,结合裂尖岩石颗粒变化的微观分析,提出采用裂纹尖端水平位移波动性和水平应变突变性所得到的波动系数和水平应变突变值,确定断裂过程区形状和临界尺寸的方法。结果表明:砂岩断裂过程区的形状为不规则的狭长带状区域,断裂过程区的临界长度为11~13mm,临界宽度为1.58~2.36mm。断裂过程区区域内形变在趋向裂尖时呈指数增加,但其单位区域内的形变增量呈波动状态。该方法能够更加准确判断岩石断裂过程区的范围,有助于分析岩石的非线性断裂特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号