首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex of cholera toxin and ganglioside GM1 is one of the highest affinity protein-carbohydrate interactions known. Herein, the GM1 pentasaccharide is dissected into smaller fragments to determine the contribution of each of the key monosaccharide residues to the overall binding affinity. Displacement isothermal titration calorimetry (ITC) has allowed the measurement of all of the key thermodynamic parameters for even the lowest affinity fragment ligands. Analysis of the standard free energy changes using Jencks' concept of intrinsic free energies reveals that the terminal galactose and sialic acid residues contribute 54% and 44% of the intrinsic binding energy, respectively, despite the latter ligand having little appreciable affinity for the toxin. This analysis also provides an estimate of 25.8 kJ mol(-1) for the loss of independent translational and rotational degrees of freedom on complexation and presents evidence for an alternative binding mode for ganglioside GM2. The high affinity and selectivity of the GM1-cholera toxin interaction originates principally from the conformational preorganization of the branched pentasaccharide rather than through the effect of cooperativity, which is also reinvestigated by ITC.  相似文献   

2.
Journal of Thermal Analysis and Calorimetry - A simple method for determination of binding isotherm in the protein-ligand interaction was introduced using isothermal titration calorimetric data....  相似文献   

3.
Isothermal titration calorimetry (ITC) was used to detect phytate binding to the protein lysozyme. This binding interaction was driven by electrostatic interaction between the positively charged protein and negatively charged phytate. When two phytate molecules bind to the protein, the charge on the protein is neutralised and no further binding occurs. The stoichiometry of binding provided evidence of phytate–lysozyme complex formation that was temperature dependent, being most extensive at lower temperatures. The initial stage of phytate binding to lysozyme was less exothermic than later injections and had a stoichiometry of 0.5 at 313 K, which was interpreted as phytate crosslinking two lysozyme molecules with corresponding water displacement. ITC could make a valuable in vitro assay to understanding binding interactions and complex formation that normally occur in the stomach of monogastric animals and the relevance of drinking water temperature on the extent of phytate–protein interaction. Interpretation of ITC data in terms of cooperativity is also discussed.  相似文献   

4.
Thermodynamics of biomacromolecule ligand interaction is very important to understand the structure function relationship in proteins. One of the most powerful techniques useful to obtain additional information about the structure of proteins in biophysical chemistry field is isothermal titration calorimetry (ITC). An ITC experiment is a titration of a biomacromolecule solution by a solution containing a reactant (ligand) at constant temperature to obtain the exchanged heat of the reaction. The total concentration of ligand is the independent variable under experimental control. There are many reports on data analysis for ITC to find the number of binding sites (g), the equilibrium constant (K), the Gibbs free energy of binding process (ΔG), the enthalpy of binding (ΔH) and the entropy of binding (ΔS). Moreover, ITC gives information about the type of reaction, electrostatic and hydrophobic interactions, including determination of cooperativity characterization in binding process by calculating the Hill coefficient (n). A double reciprocal plot and a graphical fitting method are two simple methods used in the enzyme inhibition and metal binding to a protein. Determination of a binding isotherm needs more ITC experiments and more complex data analysis. Protein denaturation by ligand includes two processes of binding and denaturation so that ITC data analysis are more complex. However, the enthalpy of denaturation process obtained by ITC help to understand the fine structure of a protein.  相似文献   

5.
ITC reveals the increasingly importance of entropy for heavier lanthanides binding to nucleotides. The phosphate group forming chelating effect with purine bases but not with pyrimidines.  相似文献   

6.
Journal of Thermal Analysis and Calorimetry - This paper describes the self-association of tetrameric acids (TA) and their interactions with asphaltenes using isothermal titration calorimetry. In...  相似文献   

7.
8.
9.
Heat divided by ligand concentration vs. heat, similar to the Scatchard plot, was introduced to obtain the equilibrium constant (K) and the enthalpy of binding (DH) using isothermal titration calorimetry data. Values of K and DH obtained by this linear pseudo-Scatchard plot for a system with a set of independent binding sites (such as binding fluoride ions on urease and monosaccharide methyl a-D-mannopyranoside on concavalin A) were remarkably like that obtained from a normal fitting Wiseman method and other our technical methods. On applying this graphical method to study the binding of copper ion on myelin basic protein (MBP), a concave downward curve obtained was consistent with the positive cooperativity in the binding. A graphical fitting by simple method for determination of thermodynamic parameters was also introduced. This method is general, without any assumption and restriction made in previous method. This general method was applied to the product inhibition study of adenosine deaminase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The interaction of myelin basic protein (MBP) from the bovine central nervous system with divalent nickel ion was studied by isothermal titration calorimetry at 37 and 47 °C in Tris buffer solution at pH = 7. The new solvation model was used to reproduce the heats of MBP + Ni2+ interaction over the whole Ni2+ concentrations. It was found that MBP has three identical and independent binding sites for Ni2+ ions. The intrinsic dissociation equilibrium constant and the molar enthalpy of binding are 89.953 μM, −14.403 kJ mol−1 and 106.978 μM, −14.026 kJ mol−1 at 37 and 47 °C, respectively. The binding parameters recovered from the new solvation model were correlated to the structural changes of MBP due to its interaction with nickel ion interaction. It was found that in the low and high concentrations of the nickel ions, the MBP structure was destabilized.  相似文献   

11.
We establish high-sensitivity isothermal titration calorimetry (ITC) as a fast, reliable, and versatile tool for assessing membrane translocation of charged compounds. A combination of ITC uptake and release titrations can discriminate between the two extreme cases of half-sided binding and complete transbilayer equilibration on the experimental time scale. To this end, we derive a general fit function for both assays that allows for incorporation of different membrane partitioning models. Electrostatic effects are taken into account with the aid of Gouy-Chapman theory, thus rendering uptake and release experiments amenable to the investigation of charged solutes. This is exemplified for the flip-flop of the anionic detergent sodium dodecyl sulfate (SDS) across the membranes of 100-nm-diameter unilamellar vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in aqueous solution (10 mM phosphate buffer, 154 mM NaCl, pH 7.4). If repulsive electrostatic forces are accounted for adequately, SDS binding to POPC membranes can be evaluated on the basis of ideal mixing in all phases. At 25 degrees C, the intrinsic partition coefficient between the interfacial aqueous phase and the membrane amounts to 3.5 x 10(6); however, detergent flip-flop is negligibly slow under these conditions. Raising the temperature to 65 degrees C lowers the intrinsic partition coefficient to 1.4 x 10(6) but enables rapid transbilayer distribution of the detergent and, therefore, binding to or desorption from both membrane leaflets. Thus, combining a surface partition equilibrium with simple electrostatic theory appears highly useful in monitoring transmembrane movement of ionic compounds by ITC, thereby eliminating the need for specific reporter groups.  相似文献   

12.
Affinity capillary electrophoresis (ACE) and isothermal titration calorimetry (ITC) were used to investigate the binding interaction between several fatty acids (FAs) and beta-cyclodextrin (beta-CD). Within each method, steps taken to obtain accurate binding constants are discussed. The stoichiometry of interaction was revealed to be 1:1 regardless of FA chain length. The binding constants obtained using ACE were: octanoate, 6.4x10(2); 2-octenoate, 4.7x10(2); decanoate, 3.7x10(3); 9-decenoate, 1.8x10(3) and dodecanote, 1.4x10(4). The binding constants obtained from ITC were of the same order of magnitude, but were consistently greater than those from ACE. Thermodynamic data obtained using ITC are used to explain the observed trends in binding strength.  相似文献   

13.
Isothermal titration calorimetry (ITC) and potentiometric titration methods have been used to study the process of proton transfer in the copper(II) ion-glycylglycine reaction. The stoichiometry, conditional stability constants, and thermodynamic parameters (ΔG, ΔH, and ΔS) for the complexation reaction were determined using the ITC method. The measurements were carried out at 298.15 K in solutions with a pH of 6 and the ionic strength maintained with 100 mM NaClO4. Carrying out the measurements in buffer solutions of equal pH but different enthalpies of ionization of its components (Mes, Pipes, Cacodylate) enabled determination of the enthalpy of complex formation, independent of the enthalpy of buffer ionization. The number of protons released by glycylglycine on account of complexation of the copper(II) ions was determined from calorimetric and potentiometric measurements.  相似文献   

14.
 Microanalysis of sulfate groups at polystyrene particle surfaces, which were derived as persulfate initiator fragments, was carried out with isothermal titration calorimetry, and compared with a conventional conductometric titration. The quantitative analysis was possible even with an extremely small number of polystyrene particles have 10 μmol sulfate groups. Received: 15 December 1998 Accepted in revised form: 24 February 1999  相似文献   

15.
We thermodynamically characterize the interaction of chitosan with small liposomes and the binding and organization of the polysaccharide on the membrane of the vesicles. By means of isothermal titration calorimetry (ITC), we obtain the enthalpy variations arising from binding of the positively ionized chitosan to neutral and negatively charged liposomes. The strong electrostatic interaction of the polysaccharide with the negative charges at the membrane gives rise to highly exothermic signal until charge compensation is reached. The equilibrium constant, the interaction stoichiometry, and the molar enthalpy of binding chitosan monomers to phospholipids from the external leaflet of the vesicle membrane are obtained from the isotherm curve fitting assuming independent binding sites. The strong exothermic signal indicates that the electrostatically driven binding of chitosan to the membrane is energetically favored, leading to further stabilization of the vesicle suspension. The higher the net negative charge of the vesicles, the more pronounced the adsorption of chitosan is, leading to weaker chain organization of the adsorbed chitosan at the membrane. At the point of charge saturation, vesicle aggregation takes place and we show that this behavior does not always lead to charge reversal at the membrane. Models for the binding behavior and structural organization of chitosan are proposed based on the experimental results from ITC, ζ-potential, and dynamic light scattering.  相似文献   

16.
Isothermal titration calorimetry (ITC) has been used to observe the chitinase-catalyzed hydrolysis of tetra-N-acetylchitotetraose. Enzymatic hydrolysis of tetra-N-acetylchitotetraose by chitinase B from Serratia marcescens produces exclusively two molecules of di-N-acetylchitobiose allowing for the determination of a single glycosidic bond hydrolysis heat that was used to monitor the rate of the enzymatic reaction. The change in heat rate with respect to time (dQ/dt) was translated to the reaction rate, and the total heat produced was related to substrate concentration throughout the reaction. Reaction rates versus substrates concentration were fit to Michaelis-Menten plots, yielding a kcat of 40.9 ± 0.5 s−1 and a Km of 54 ± 2 μM.  相似文献   

17.
During the past decade, isothermal titration calorimetry (ITC) has developed from a specialist method to a major, commercially available tool in the arsenal directed at understanding molecular interactions. At present, ITC is used to study all types of binding reactions, including protein-protein, protein-ligand, DNA-drug, DNA-protein, receptor-target, and enzyme kinetics, and it is becoming the method of choice for the determination of the thermodynamic parameters associated with the structure transformation of one molecule or non-covalent interaction of two (or more) molecules. Here, the new applications of ITC in protein folding/unfolding and misfolding, as well as its traditional application in molecular interaction/recognition are reviewed, providing an overview of what can be achieved in these fields using this method and what developments are likely to occur in the near future.  相似文献   

18.
Heat of adsorption is an excellent measure for adsorption strength and, therefore, very useful to study the influence of salt and temperature in hydrophobic interaction chromatography. The adsorption of bovine serum albumin and β‐lactoglobulin to Toyopearl Butyl‐650 M was studied with isothermal titration calorimetry to follow the unfolding of proteins on hydrophobic surfaces. Isothermal titration calorimetry is established as an experimental method to track conformational changes of proteins on stationary phases. Experiments were carried out at two different salt concentrations and five different temperatures. Protein unfolding, as indicated by large changes of molar enthalpy of adsorption Δhads, was observed to be dependent on temperature and salt concentration. Δhads were significantly higher for bovine serum albumin and ranged from 578 (288 K) to 811 (308 K) kJ/mol for 1.2 mol/kg ammonium sulfate. Δhads for β‐lactoglobulin ranged from 129 kJ/mol (288 K) to 186 kJ/mol (308 K). For both proteins, Δhads increased with increasing temperature. The influence of salt concentration on Δhads was also more pronounced for bovine serum albumin than for β‐lactoglobulin. The comparison of retention analysis evaluated by the van't Hoff algorithm shows that beyond adsorption other processes occur simultaneously. Further interpretation such as unfolding upon adsorption needs other in situ techniques.  相似文献   

19.
Ghasemi J  Niazi A  Westman G  Kubista M 《Talanta》2004,62(4):835-841
The monomer-dimer equilibrium of an asymmetric cyanine dye has been investigated by means of UV-Vis spectroscopy. The data have been processed by a recently developed chemometric method for quantitative analysis of undefined mixtures, that is based on simultaneous resolution of the overlapping bands in the whole set of absorption. In this work the dimerization constant of 1-carboxydecyl-4-{3-[3-methyl-3H-benzothiazol-2-ylidene]-propenyl}-quinolinium (TO-3) has been determined by studying the dependence of absorption spectrum on temperature in the range 25-72.5 °C at different total concentrations of dye (8.5×10−6 to 2.87×10−5 M). Utilizing the van’t Hoff relation, which describes the dependence of the equilibrium constant on temperature, as constraint we determine the spectral responses of the monomer and dimer species as well as the enthalpy and entropy of the dimerization equilibrium.  相似文献   

20.
Thermodynamic study has been made of lithium-vanadium bronzes β-LixV2O5?y in reversible cells with a lithium-conducting solid electrolyte using coulometric titration. The linear dependence of ΔGLi in the bronze on parameters x and T was found. It is concluded that the dependence of ΔGLi on the PO2 value is weak. The limits of the homogeneity region of β-LixV2O5?y have been more clearly defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号