首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate has been tested as solvent for the separation of thiophene from aliphatic hydrocarbons. Liquid–liquid equilibrium data have been determined for ternary systems containing the ionic liquid, thiophene and C6, C7, C12 or C16 alkanes at T = 298.15 K. The performance of the ionic liquid as solvent in such systems has been evaluated. The experimental data were correlated using the NRTL and UNIQUAC equations, and the binary interaction parameters have been reported. The phase diagrams for the ternary mixtures including both the experimental and calculated tie-lines have been presented.  相似文献   

2.
Experimental results for the solubility of carbon dioxide in the ionic liquid 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate are not reported in the literature. To this end, we present in this work new solubility data for carbon dioxide in 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate for temperatures ranging from (303.2 to 343.2) K and pressures up to 6.7 MPa using a thermogravimetric microbalance. The carbon dioxide solubility was determined from absorption saturation (equilibrium) data at each fixed temperature and pressure. The buoyancy effect was accounted in the evaluation of the carbon dioxide solubility. Highly accurate equations of states for carbon dioxide and for ionic liquids were employed to determine the effect of buoyancy on carbon dioxide solubility. The solubility measurements are presented as a function of temperature and pressure. The present experimental solubility results have been successfully correlated using an extended Henry’s law equation.  相似文献   

3.
Taking into account that heat application can have undesirable effects in essential oil properties, liquid extraction comes up as a promising process instead of distillation for citrus oil deterpenation. In this work the suitability of using the ionic liquid 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate as a solvent for the extraction of linalool from citrus essential oil (which has been simulated as a mixture of limonene and linalool) has been analyzed. Liquid–liquid equilibrium data at three different temperatures (298.15 K, 308.15 K and 318.15 K) have been reported and successfully correlated using NRTL model. The best results were achieved using α = 0.1 for the systems at 298.15 K and 308.15 K and α = 0.2 at 318.15 K. The solute distribution ratio has showed values close to one and high values of selectivity have been achieved.  相似文献   

4.
In this work, the phase behaviour of the binary system of carbon dioxide and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) has been studied experimentally. The equipment used for the experiments is the Cailletet set-up, based on visual observations of phase transitions of systems with constant overall composition. Results are reported for carbon dioxide concentrations ranging from 12.3 to 59.3 mol%, and within temperature and pressure ranges of 310–450 K and 0–15 MPa, respectively. The data reveal an extremely high capacity of the selected ionic liquid for dissolving CO2 gas, for example, reaching up to about 60 mol% within the above-mentioned pressure and temperature range. Also, the solubility of CO2 in the ionic liquid [emim][Tf2N] is compared to the solubility of CO2 in the ionic liquid [emim][PF6], an ionic liquid that shares the same cation.  相似文献   

5.
An important step in developing ionic-liquid-based electrolytes for lithium rechargeable batteries is obtaining a molecular-level understanding of the ionic interactions that occur in these systems. In this study, 1-ethyl-3-methylimidazolium trifluoromethansulfonate ([C2mim]CF3SO3) is complexed with LiCF3SO3, and the local structures of the CF3SO3- and [C2mim]+ ions are investigated with infrared and Raman spectroscopy. The isolation and subsequent refinement of a Li[C2mim](CF3SO3)2 crystal provides further insight into the structure of the [C2mim]CF3SO3-LiCF3SO3 solutions. Minor changes are observed in the infrared and Raman spectra of dilute [C2mim]CF3SO3-LiCF3SO3 solutions compared to pure [C2mim]CF3SO3. However, a suspension of very small Li[C2mim](CF3SO3)2 crystallites forms at a solution composition of [C2mim]CF3SO3:LiCF3SO3 = 10:1 (mole ratio), placing an upper limit on the solubility of LiCF3SO3. Essentially no changes are observed in the vibrational modes of the [C2mim]+ cations over the entire range of LiCF3SO3 compositions studied, suggesting that the addition of these compounds does not significantly perturb the local structure of the [C2mim]+ cations. The salt used in this study has a common anion with the ionic liquid; thus, the ion cloud surrounding the [C2mim]+ ions, which must be primarily composed of CF3SO3- anions, is not significantly altered with the addition of LiCF3SO3.  相似文献   

6.
In order to better understand the volatilization process for ionic liquids, the vapor evolved from heating the ionic liquid 1-ethyl-3-methylimidazolium bromide (EMIM(+)Br(-)) was analyzed via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry (VUV-PI-TOFMS) and thermogravimetric analysis mass spectrometry (TGA-MS). For this ionic liquid, the experimental results indicate that vaporization takes place via the evolution of alkyl bromides and alkylimidazoles, presumably through alkyl abstraction via an S(N)2 type mechanism, and that vaporization of intact ion pairs or the formation of carbenes is negligible. Activation enthalpies for the formation of the methyl and ethyl bromides were evaluated experimentally, ΔH(?)(CH(3)Br) = 116.1 ± 6.6 kJ/mol and ΔH(?)(CH(3)CH(2)Br) = 122.9 ± 7.2 kJ/mol, and the results are found to be in agreement with calculated values for the S(N)2 reactions. Comparisons of product photoionization efficiency (PIE) curves with literature data are in good agreement, and ab initio thermodynamics calculations are presented as further evidence for the proposed thermal decomposition mechanism. Estimates for the enthalpy of vaporization of EMIM(+)Br(-) and, by comparison, 1-butyl-3-methylimidazolium bromide (BMIM(+)Br(-)) from molecular dynamics calculations and their gas phase enthalpies of formation obtained by G4 calculations yield estimates for the ionic liquids' enthalpies of formation in the liquid phase: ΔH(vap)(298 K) (EMIM(+)Br(-)) = 168 ± 20 kJ/mol, ΔH(f,?gas)(298 K) (EMIM(+)Br(-)) = 38.4 ± 10 kJ/mol, ΔH(f,?liq)(298 K) (EMIM(+)Br(-)) = -130 ± 22 kJ/mol, ΔH(f,?gas)(298 K) (BMIM(+)Br(-)) = -5.6 ± 10 kJ/mol, and ΔH(f,?liq)(298 K) (BMIM(+)Br(-)) = -180 ± 20 kJ/mol.  相似文献   

7.
离子液体(ionic liquids)是在室温下液态的一种熔融盐,又称为室温离子液体,一般由有机阳离子和无机阴离子或者有机阴离子构成,可以通过调节阴阳离子的种类来改变离子液体的性能,因此敢称为一种"可以设计的溶剂".  相似文献   

8.
Air and moisture stable ionic liquid like 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMICF3SO3) has been used as an electrolyte for the electrooxidative polymerization of pyrrole; the morphological structure of polypyrrole film formed on the anode was greatly affected, and the polymerization rate, electrochemical capacity and electroconductivity were significantly increased. Furthermore, it was also found that EMICF3SO3 could be recovered by a simple extraction of the remaining pyrrole monomer from the ionic liquid after use, and then reused without significant loss of reactivity for the polymerization.  相似文献   

9.
A new method of obtaining molecular reorientational dynamics from 13C spin-lattice relaxation data of aromatic carbons in viscous solutions is applied to 13C relaxation data of both the cation and anion in the ionic liquid, 1-ethyl-3-methylimidazolium butanesulfonate ([EMIM]BSO3). 13C pseudorotational correlation times are used to calculate corrected maximum NOE factors from a combined isotropic dipolar and nuclear Overhauser effect (NOE) equation. These corrected maximum NOE factors are then used to determine the dipolar relaxation rate part of the total relaxation rate for each aromatic 13C nucleus in the imidazolium ring. Rotational correlation times are compared with viscosity data and indicate several [EMIM]BSO3 phase changes over the temperature range from 278 to 328 K. Modifications of the Stokes-Einstein-Debye (SED) model are used to determine molecular radii for the 1-ethyl-3-methylimidazolium cation. The Hu-Zwanzig correction yields a cationic radius that compares favorably with a DFT gas-phase calculation, B3LYP/(6-311+G(2d,p)). Chemical shift anisotropy values, Deltasigma, are obtained for the ring and immediately adjacent methylene and methyl carbons in the imidazolium cation and for the three carbon atoms nearest to the sulfonate group in the anion.  相似文献   

10.
Thermophysical behavior of the binary system [water + 1-ethyl-3-methylimidazolium tricyanomethanide ionic liquid (IL)] was thoroughly characterized through systematic measurements of (vapor + liquid) equilibria (water activity aw), mixing enthalpy, density, viscosity, and refractive index. The measurements were performed in the entire composition range and/or specifically in the highly dilute IL region, at T = 298.15 K or as a function of temperature in the range from (288.15 to 318.15) K. Effective experimental methods minimizing IL sample consumption, using flow arrangements, instrument couplings and high degree of automation were preferably employed. In particular, the aw determination based on the chilled-mirror dew point technique and implemented by an AquaLab 4TE instrument was identified as a generally superior approach to study VLE of (water + IL) systems. Excess thermodynamic properties (Gibbs free energy, enthalpy, heat capacity, and volume) and property deviations from the linear mixing rule (viscosity, refractive index) were evaluated, Padé approximants being used to correlate adequately their complex composition dependences. The extensive aw data were processed by a two-step procedure fitting first the temperature dependence at each isopleth and subsequently the composition dependence at each isotherm. Good estimates could be thus obtained for derivative thermal properties (enthalpy, heat capacity). Alternatively, the water activity and excess enthalpy data were correlated simultaneously by a NRTL-type model, providing their compact, thermodynamically consistent and adequate representation. Despite small absolute values of excess Gibbs free energy (GE), the system is revealed to be highly nonideal, the small GE resulting from close compensation of its large enthalpy and entropy contributions. Large endothermic effects and an enhanced increase of entropy upon mixing found for this system indicate relative weakness of interactions between unlike molecules and a massive structure breakage in the solution. Positive values of excess volume and negative values of viscosity and refractive index deviations found in the major part of the composition range corroborate this general energetic and structural pattern, although the situation appears to be more complicated in the highly dilute IL region, where these properties congruently exhibit a sign inversion.  相似文献   

11.
This paper reports densities of aqueous of liquid (IL) 3-ethyl-1-methylimidazolium ethyl sulfate (EMISE). The apparent molal volume, partial molal volume and Pitzer’s parameters of EMISE were obtain.  相似文献   

12.
13.
The technologically important properties of room temperature ionic liquids (RTILs) are fundamentally linked to the ion-ion interactions present among the constituent ions. These ion-ion interactions in one RTIL (1-ethyl-3-methylimidazolium trifluoromethanesulfonate, [C(2)mim]CF(3)SO(3)) are characterized with transmission FTIR spectroscopy and polarized attenuated total reflection (ATR) FTIR spectroscopy. A quasilattice model is determined to be the best framework for understanding the ionic interactions. A novel spectroscopic approach is proposed to characterize the degree of order that is present in the quasilattice by comparing the dipole moment derivative calculated from two independent spectroscopic measurements: (1) the TO-LO splitting of a vibrational mode using dipolar coupling theory and (2) the optical constants of the material derived from polarized ATR experiments. In principle, dipole moment derivatives calculated from dipolar coupling theory should be similar to those calculated from the optical constants if the quasilattice of the RTIL is highly structured. However, a significant disparity for the two calculations is noted for [C(2)mim]CF(3)SO(3), indicating that the quasilattice of [C(2)mim]CF(3)SO(3) is somewhat disorganized. The potential ability to spectroscopically characterize the structure of the quasilattice, which governs the long-range ion-ion interactions in a RTIL, is a major step forward in understanding the interrelationship between the molecular-level interactions among the constituent ions of an ionic liquid and the important physical properties of the RTIL.  相似文献   

14.
Quantum chemical calculations of the structures and cation-anion interaction of 1-ethyl-3-methylimidazolium lactate ([Emim][LAC]) ion pair at the B3LYP/6-31++G** theoretical level were performed. The relevant geometrical characteristics, energy properties, intermolecular H-bonds (H-bonds), and calculated IR vibrations with respect to isolated ions were systematically discussed. The natural bond orbital (NBO) and atoms in molecule (AIM) analyses were also employed to understand the nature of the interactions between cation and anion. The five most stable geometries were verified by analyzing the relative energies and interaction energies. It was found that the most of the C-H···O intermolecular H-bonds interactions in five stable conformers have some covalent character in nature. The elongation and red shift in IR spectrum of C-H bonds which involve in H-bonds is proved by electron transfers from the lone pairs of the carbonyl O atom of [LAC] to the C-H antibonding orbital of the [Emim]+. The interaction modes are more favorable when the carbonyl O atoms of [LAC] interact with the C2-H of the imidazolium ring and the C-H of the ethyl group through the formation of triple H-bonds.  相似文献   

15.
16.
New experimental results are presented for the solubility of carbon dioxide, hydrogen sulfide in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate ([C8mim][PF6]) at temperatures range from (303.15 to 353.15) K and pressures up to about 2 MPa. The solubility of the mixture of CO2/H2S in [C8mim][PF6] under various feed compositions were also measured at temperatures of (303.15, 323.15 and 343.15) K and the pressure up to 1 MPa. The solubility of carbon dioxide and hydrogen sulfide increased with increasing pressure and decreased with increasing temperature and the solubility of H2S is about three times that of CO2 in the particular ionic liquid studied. The measured data were correlated using extended Henry’s law included Pitzer’s virial expansion for the excess Gibbs energy, and the generic Redlich–Kwong cubic equation of state proposed for gas/ionic liquid systems. The correlations from the two models show quite good consistency with the experimental data for CO2/IL and H2S/IL binary mixtures within experimental uncertainties. For CO2/H2S/IL ternary mixtures, the RK model shows better correlation with the experimental values. We also studied the effect of cation alkyl chain length on the CO2 and H2S solubility by comparison of the experimental data of this study with those of previous reports. As the cation alkyl chain length became longer, the solubility of CO2 and H2S increased in the ionic liquid. Additionally, the influence of the anion on the solubility is studied by comparing the solubility of CO2 and H2S in [C8mim][PF6] with those in [C8mim][Tf2N]. As a result, CO2 and H2S have higher solubility in the IL with [Tf2N] as the anion.  相似文献   

17.
Reorientational time correlation functions C(l)(t)( identical withP(l)[cos theta(t)]) for a diatomic solute in 1-ethyl-3-methylimidazolium hexafluorophosphate (EMI(+)PF(6) (-)) are analyzed via molecular dynamics computer simulations, where <...> denotes an equilibrium ensemble average, P(l) the lth order Legendre polynomial and theta(t) the angle between the solute orientation at time t and its initial direction. Overall results are indicative of heterogeneous dynamics in EMI(+)PF(6) (-). For a small nondipolar solute, C(l)(t) are well-described as stretched exponential functions in wide time ranges. One striking feature is that after rapid initial relaxation, C(2)(t) decays more slowly than C(1)(t). As a result, the correlation time associated with the former is considerably longer than that with the latter. This is ascribed to solvent structural fluctuations, which allow large-amplitude solute rotations. As the solute size grows, relaxation of C(l)(t) approaches exponential decay.  相似文献   

18.
The corrosion properties of carbon steel (CS), 304 stainless steel (304 SS), and pure titanium (Ti) are first studied in aluminum chloride–1-ethyl-3-methylimidazolium chloride ionic liquid (IL). An active-to-passive transition behavior was clearly observed for CS. The 304 SS exhibited the best stability among the materials; no considerable corrosion was recognized even in this high-chloride environment. In contrast, although Ti resists corrosion in ambient environments, it was not passivated in the IL and became severely corroded under an anodic applied potential. The material corrosion behaviors and mechanisms in the non-aqueous, low-oxygen, and high-halogen-containing IL are completely different from those in traditional aqueous solutions.  相似文献   

19.
Broadband dielectric and terahertz spectroscopy (10(-2)-10(+12) Hz) are combined with pulsed field gradient nuclear magnetic resonance (PFG-NMR) to explore charge transport and translational diffusion in the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. The dielectric spectra are interpreted as superposition of high-frequency relaxation processes associated with dipolar librations and a conductivity contribution. The latter originates from hopping of charge carriers on a random spatially varying potential landscape and quantitatively fits the observed frequency and temperature dependence of the spectra. A further analysis delivers the hopping rate and enables one to deduce--using the Einstein-Smoluchowski equation--the translational diffusion coefficient of the charge carriers in quantitative agreement with PFG-NMR measurements. By that, the mobility is determined and separated from the charge carrier density; for the former, a Vogel-Fulcher-Tammann and for the latter, an Arrhenius temperature dependence is obtained. There is no indication of a mode arising from the reorientation of stable ion pairs.  相似文献   

20.
The solubility of carbon dioxide in a series of 1-(2-hydroxyethyl)-3-methylimidazolium ([hemim]+) based ionic liquids (ILs) with different anions, viz. hexafluorophosphate ([PF6]?), trifluoromethanesulfonate ([OTf]?), and bis-(trifluoromethyl)sulfonylimide ([Tf2N]?) at temperatures ranging from 303.15 K to 353.15 K and pressures up to 1.3 MPa were determined. The solubility data were correlated using the Krichevsky–Kasarnovsky equation and Henry’s law constants were obtained at different temperatures. Using the solubility data, the partial molar thermodynamic functions of solution such as Gibbs free energy, enthalpy, and entropy were calculated. Comparison showed that the solubility of CO2 in the ILs studied follows the same behaviour as the corresponding conventional 1-ethyl-3-methylimidazolium ([emim]+) based ILs with the same anions, i.e. [hemim][NTf2] > [hemim][OTf] > [hemim][PF6] > [hemim][BF4].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号