In this paper, the dynamics of a particle placed on a thin circular plate carrying circumferential harmonic travelling wave is studied. Coulomb friction is used to model the particle–surface interaction. Distinct regions on the plate surface are identified where either of the three phases of particle motion, namely jumping, sliding and sticking, occurs. Also, the effect of wave frequency and the plate geometry on these regions is studied. Interestingly, there exists an optimum plate thickness for which the region of sliding is maximum. At certain wave frequencies, from the numerical simulations within sticking and sliding regions, it is observed that the average particle motion spirals inwards towards the plate centre. Such an average motion is observed whenever the particle is placed initially with a zero velocity relative to the plate surface. The Gedanken experiments discussed herein provide cogent explanations to all the observed average (slow) dynamics and are also found to be useful in predicting the slow dynamics of the particle a priori, that is, before the actual numerical simulations. The particle’s velocity couples the radial and tangential sliding friction components and is found to be the key physical feature that explains the observed behaviour. Also, it is observed that the plate surface excited by circumferential travelling waves can provide acoustic lubrication to a particle by reducing the limiting force required to move it relative to the surface. The methods discussed in this paper can be extended to study the dynamics of a group of particles (granular materials) and extended rigid bodies, interacting with such surface waves.
相似文献