首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesh motion using radial basis functions has been demonstrated previously by the authors to produce high quality meshes suitable for use within unsteady and aeroelastic CFD codes. In the aeroelastic case the structural mesh may be used as the set of control points governing the deformation, which is efficient since the structural mesh is usually small. However, as a stand alone mesh motion tool, where the surface mesh points control the motion, radial basis functions may be restricted by the size of the surface mesh, as an update of a single volume point depends on all surface points. In this paper a method is presented that allows an arbitrary deformation to be represented to within a desired tolerance by using a significantly reduced set of surface points intelligently identified in a fashion that minimises the error in the interpolated surface. This method may be used on much larger cases and is successfully demonstrated here for a 106 cell mesh, where the initial solve phase cost reduces by a factor of eight with the new scheme and the mesh update by a factor of 55. It has also been shown that the number of surface points required to represent the surface is only geometry dependent (i.e. grid size independent), and so this reduction factor actually increases for larger meshes.  相似文献   

2.
The singularity of cylindrical or spherical coordinate systems at the origin imposes certain regularity conditions on the spectral expansion of any infinitely differentiable function. There are two efficient choices of a set of radial basis functions suitable for discretising the solution of a partial differential equation posed in either such geometry. One choice is methods based on standard Chebyshev polynomials; although these may be efficiently computed using fast transforms, differentiability to all orders of the obtained solution at the origin is not guaranteed. The second is the so-called one-sided Jacobi polynomials that explicitly satisfy the required behavioural conditions. In this paper, we compare these two approaches in their accuracy, differentiability and computational speed. We find that the most accurate and concise representation is in terms of one-sided Jacobi polynomials. However, due to the lack of a competitive fast transform, Chebyshev methods may be a better choice for some computationally intensive timestepping problems and indeed will yield sufficiently (although not infinitely) differentiable solutions provided they are adequately converged.  相似文献   

3.
Spectral radial basis functions for full sphere computations   总被引:1,自引:1,他引:0  
The singularity of cylindrical or spherical coordinate systems at the origin imposes certain regularity conditions on the spectral expansion of any infinitely differentiable function. There are two efficient choices of a set of radial basis functions suitable for discretising the solution of a partial differential equation posed in either such geometry. One choice is methods based on standard Chebyshev polynomials; although these may be efficiently computed using fast transforms, differentiability to all orders of the obtained solution at the origin is not guaranteed. The second is the so-called one-sided Jacobi polynomials that explicitly satisfy the required behavioural conditions. In this paper, we compare these two approaches in their accuracy, differentiability and computational speed. We find that the most accurate and concise representation is in terms of one-sided Jacobi polynomials. However, due to the lack of a competitive fast transform, Chebyshev methods may be a better choice for some computationally intensive timestepping problems and indeed will yield sufficiently (although not infinitely) differentiable solutions provided they are adequately converged.  相似文献   

4.
A fast mesh deformation method using explicit interpolation   总被引:1,自引:0,他引:1  
A novel mesh deformation algorithm for unstructured polyhedral meshes is developed utilizing a tree-code optimization of a simple direct interpolation method. The algorithm is shown to provide mesh quality that is competitive with radial basis function based methods, with markedly better performance in preserving boundary layer orthogonality in viscous meshes. The parallelization of the algorithm is described, and the algorithm cost is demonstrated to be O(n log n). The parallel implementation was used to deform meshes of 100 million nodes on nearly 200 processors demonstrating that the method scales to large mesh sizes. Results are provided for a simulation of a high Reynolds number fluid–structure interaction case using this technique.  相似文献   

5.
戴保东  程玉民 《物理学报》2007,56(2):597-603
将基于径向基函数构造的具有插值特性的近似函数和局部边界积分方程方法相结合,建立了求解势问题的径向基函数——局部边界积分方程方法,推导了相应离散方程.与其他边界积分方程的无网格方法相比,本文方法具有数值实现过程简单、计算量小、精度高的优点,并可直接施加边界条件.最后通过算例说明了该方法的有效性. 关键词: 径向基函数 无网格方法 局部边界积分方程 势问题  相似文献   

6.
李淑玲  李小林 《中国物理 B》2014,23(2):28702-028702
In this paper, radial basis functions are used to obtain the solution of evolution equations which appear in variational level set method based image segmentation. In this method, radial basis functions are used to interpolate the implicit level set function of the evolution equation with a high level of accuracy and smoothness. Then, the original initial value problem is discretized into an interpolation problem. Accordingly, the evolution equation is converted into a set of coupled ordinary differential equations, and a smooth evolution can be retained. Compared with finite difference scheme based level set approaches, the complex and costly re-initialization procedure is unnecessary. Numerical examples are also given to show the efficiency of the method.  相似文献   

7.
The semi-exponential basis set of radial functions [A.M. Frolov, Phys. Lett. A 374, 2361 (2010)] is used for variational computations of bound states in three-electron atomic systems. It appears that the semi-exponential basis set has a substantially greater potential for accurate variational computations of bound states in three-electron atomic systems than was originally anticipated. In particular, the 40-term Larson’s wave function improved with the use of semi-exponential radial basis functions now produces the total energy –7.4780581457 a.u. for the ground 12S-state in the Li^\infty{\rm Li} atom (only one spin function c1\chi_1 = aba\alpha\beta\alpha - baa\beta\alpha\alpha was used in these calculations). This variational energy is very close to the exact ground state energy of the Li^\infty{\rm Li} atom and is substantially lower than the total energy obtained with the original Larson’s 40-term wave function (–7.477944869 a.u.).  相似文献   

8.
With the growing availability of various optical and laser scanners, it is easy to capture different kinds of mesh models which are inevitably corrupted with noise. Although many mesh denoising methods proposed in recent years can produce encouraging results, most of them still suffer from their computational efficiencies. In this paper, we propose a highly efficient approach for mesh denoising while preserving geometric features. Specifically, our method consists of three steps: initial vertex filtering, normal estimation, and vertex update. At the initial vertex filtering step, we introduce a fast iterative vertex filter to substantially reduce noise interference. With the initially filtered mesh from the above step, we then estimate face and vertex normals: an unstandardized bilateral filter to efficiently smooth face normals, and an efficient scheme to estimate vertex normals with the filtered face normals. Finally, at the vertex update step, by utilizing both the filtered face normals and estimated vertex normals obtained from the previous step, we propose a novel iterative vertex update algorithm to efficiently update vertex positions. The qualitative and quantitative comparisons show that our method can outperform the selected state of the art methods, in particular, its computational efficiency (up to about 32 times faster).  相似文献   

9.
This paper develops an algorithm for radial basis function (RBF) local node refinement and implements it for vortex roll-up and transport on a sphere. A heuristic based on an electrostatic repulsion type principle is used to re-distribute the nodes, clustering in areas where higher resolution is needed. It is then important to have a scheme that varies the shape of the RBFs over the domain so as to counteract the effects of Runge phenomena where the nodes are sparse. The roll-up of two diametrically opposed moving vortices are studied. The performance differences between near-uniform and refined nodes are addressed in terms of convergence, time stability, and computational cost. RBF results are put into context by comparison with published results for methods such as finite volume and discontinuous Galerkin.  相似文献   

10.
11.
采用分子动力学方法计算得到DHI-乙烯醇聚合体系统的结构和径向分布函数.讨论了系统结构和径向分布函数与温度和压力之间的关系.结果表明粘合系统的空间分布一般地随着温度和压力的增加而收窄,对增加聚氨酯系统的粘合性具有积极的意义.  相似文献   

12.
This paper presents a new method to synchronize different chaotic systems with disturbances via an active radial basis function (RBF) sliding controller. This method incorporates the advantages of active control, neural network and sliding mode control. The main part of the controller is given based on the output of the RBF neural networks and the weights of these single layer networks are tuned on-line based on the sliding mode reaching law. Only several radial basis functions are required for this controller which takes the sliding mode variable as the only input. The proposed controller can make the synchronization error converge to zero quickly and can overcome external disturbances. Analysis of the stability for the controller is carried out based on the Lyapunov stability theorem. Finally, five examples are given to illustrate the robustness and effectiveness of the proposed synchronization control strategy.  相似文献   

13.
采用分子动力学方法计算得到DHI-乙烯醇聚合体系统的结构和径向分布函数。讨论了系统结构和径向分布函数与温度和压力之间的关系。结果表明粘合系统的空间分布一般地随着温度和压力的增加而收窄,对增加聚氨酯系统的粘合性具有积极的意义。  相似文献   

14.
General theory of a new reconstruction technique for partially parallel imaging (PPI) is presented in this study. Reconstruction in Image space using Basis functions (RIB) is based on the general principle that the PPI reconstruction in image space can be represented by a pixel-wise weighted summation of the aliased images directly from undersampled data. By assuming that these weighting coefficients for unaliasing can be approximated from the linear combination of a few predefined basis functions, RIB is capable of reconstructing the image within an arbitrary region. This paper discusses the general theory of RIB and its relationship to the classical reconstruction method, GRAPPA. The presented experiments demonstrate RIB with several MRI applications. It is shown that the performance of RIB is comparable to that of GRAPPA. In some cases, RIB shows advantages of increasing reconstruction efficiency, suppressing artifacts and alleviating the nonuniformity of noise distribution. It is anticipated that RIB would be especially useful for cardiac and prostate imaging, where the field of view during data acquisition is required to be much larger than the region of interest.  相似文献   

15.
We introduce a reduced basis approach as a new paradigm for modeling, representing and searching for gravitational waves. We construct waveform catalogs for nonspinning compact binary coalescences, and we find that for accuracies of 99% and 99.999% the method generates a factor of about 10-10(5) fewer templates than standard placement methods. The continuum of gravitational waves can be represented by a finite and comparatively compact basis. The method is robust under variations in the noise of detectors, implying that only a single catalog needs to be generated.  相似文献   

16.
This paper addresses the task of recovering the geoacoustic parameters of a shallow-water environment using measurements of the acoustic field due to a known source and a neural network based inversion process. First, a novel efficient "observable" of the acoustic signal is proposed, which represents the signal in accordance with the recoverable parameters. Motivated by recent studies in non-Gaussian statistical theory, the observable is defined as a set of estimated model parameters of the alpha-stable distributions, which fit the marginal statistics of the wavelet subband coefficients, obtained after the transformation of the original signal via a one-dimensional wavelet decomposition. Following the modeling process to extract the observables as features, a radial basis functions neural network is employed to approximate the vector function that takes as input the observables and gives as output the corresponding set of environmental parameters. The performance of the proposed approach in recovering the sound speed and density in the substrate of a typical shallow-water environment is evaluated using a database of synthetic acoustic signals, generated by means of a normal-mode acoustic propagation algorithm.  相似文献   

17.
Ultrasonic flaw detection using radial basis function networks (RBFNs)   总被引:2,自引:0,他引:2  
Gil Pita R  Vicen R  Rosa M  Jarabo MP  Vera P  Curpian J 《Ultrasonics》2004,42(1-9):361-365
Ultrasonic flaw detection has been studied many times in the literature. Schemes based on thresholding after a previous matched filter use to be the best solution, but results obtained with this method are only satisfactory when scattering and attenuation are not considered. In this paper, we propose an alternative solution to thresholding detection method. We deal with the usage of different flaw detection methods comparing them with the proposed one. The experiment tries to determinate whether a given ultrasonic signal contains a flaw echo or not. Starting with a set of 24,000 patterns with 750 samples each one, two subsets are defined for the experiments. The first one, the training set, is used to obtain the detection parameters of the different methods, and the second one is used to test the performance of them. The proposed method is based on radial basis functions networks, one of the most powerful neural network techniques. This signal processing technique tries to find the optimal decision criterion. Comparing this method with thresholding based ones, an improvement over 25-30% is obtained, depending on the probability of false alarm. So our new method is a good alternative to flaw detection problem.  相似文献   

18.
In this paper we study multiscale finite element methods (MsFEMs) using spectral multiscale basis functions that are designed for high-contrast problems. Multiscale basis functions are constructed using eigenvectors of a carefully selected local spectral problem. This local spectral problem strongly depends on the choice of initial partition of unity functions. The resulting space enriches the initial multiscale space using eigenvectors of local spectral problem. The eigenvectors corresponding to small, asymptotically vanishing, eigenvalues detect important features of the solutions that are not captured by initial multiscale basis functions. Multiscale basis functions are constructed such that they span these eigenfunctions that correspond to small, asymptotically vanishing, eigenvalues. We present a convergence study that shows that the convergence rate (in energy norm) is proportional to (H/Λ1)1/2, where Λ1 is proportional to the minimum of the eigenvalues that the corresponding eigenvectors are not included in the coarse space. Thus, we would like to reach to a larger eigenvalue with a smaller coarse space. This is accomplished with a careful choice of initial multiscale basis functions and the setup of the eigenvalue problems. Numerical results are presented to back-up our theoretical results and to show higher accuracy of MsFEMs with spectral multiscale basis functions. We also present a hierarchical construction of the eigenvectors that provides CPU savings.  相似文献   

19.
说话人识别使用遗传RBF网络   总被引:6,自引:0,他引:6       下载免费PDF全文
针对RBF网络普遍采用的一种训练算法所存在的局部最佳问题,本文将遗传算法用于RBF网络训练过程,增强了该网络的全局寻优能力,提高了RBF网络的模式识别性能.说话人识别实验显示,改进训练算法后,RBF网络的说话人识别率有稍许提高.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号