首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The combination of a vertically aligned carbon nanotube array (CNTA) framework and electrodeposition technique leads to a tube-covering-tube nanostructured polyaniline (PANI)/CNTA composite electrode with hierarchical porous structure, large surface area, and superior conductivity. PANI/CNTA composite electrode has high specific capacitance (1030 F g−1), superior rate capability (95% capacity retention at 118 A g−1), and high stability (5.5% capacity loss after 5000 cycles). Energy storage characteristics of the PANI/CNTA composite are presented in this paper.  相似文献   

2.
Au/polyaniline (PANI)–poly(4-styrenesulfonate) (PSS) hybrid nanoarray is fabricated for biomolecular sensing in neutral aqueous solutions. Firstly, an array of one-dimensional Au nanorods (diameter = ca. 200 nm, length = ca. 3 μm) is formed by a template-electrodeposition method using a porous anodic alumina membrane, and then a thin PANI–PSS composite layer is electropolymerized on the surface of the Au nanorods. The resulting Au/PANI–PSS hybrid nanoarray exhibits a quasi-reversible redox electrochemical process at ca. +0.11 V and electrocatalytic oxidation of reduced β-nicotinamide adenine dinucleotide (NADH) is attained with a detection limit of 0.3 μM in a neutral solution.  相似文献   

3.
《Comptes Rendus Chimie》2014,17(7-8):869-880
An organic–inorganic hybrid mesoporous silica was synthesized via post-grafting of KIT-6 with 4-(triethoxysilyl)butyronitrile. All samples were characterized using their N2 adsorption–desorption isotherms, XRD, FT–IR, TEM, SEM, and PT. The adsorption potential of this material for removing Pb(II) from aqueous solutions was investigated via the batch technique, and the effects of pH and contact time were studied. Experimental data showed that the maximum Pb(II) adsorption, 76%, occurred in the pH range around 6. The adsorption equilibrium was reached within 40 min for 10 wt.%COOH/KIT-6. The adsorption data were fitted using the Langmuir and Freundlich isotherms, and the obtained modeling equilibrium adsorption data suggested that the 10 wt.%COOH/KIT-6 sample contained homogeneous adsorption sites that fit the Langmuir adsorption model well. The pseudo-second-order model described well the 10 wt.%COOH/KIT-6 adsorption process. The desorption and regeneration experiments indicated that ≈95% of the metal desorbed and the adsorbent could be regenerated via an acid treatment without altering its properties.  相似文献   

4.
Polyaniline(PANI)/Tin oxide (SnO2) hybrid nanocomposite with a diameter 20–30 nm was prepared by co-precipitation process of SnO2 through in situ chemical polymerization of aniline using ammonium persulphate as an oxidizing agent. The resulting nanocomposite material was characterized by different techniques, such as X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Fourier Transform Infrared spectroscopy (FT-IR) and Ultraviolet–Visible spectroscopy (UV–Vis), which offered the information about the chemical structure of polymer, whereas electron microscopy images provided information regarding the morphology of the nanocomposite materials and the distribution of the metal particles in the nanocomposite material. SEM observation showed that the prepared SnO2 nanoparticles were uniformly dispersed and highly stabilized throughout the macromolecular chain that formed a uniform metal-polymer nanocomposite material. UV–Vis absorption spectra of PANI/SnO2 nanocomposites were studied to explore the optical behavior after doping of nanoparticles into PANI matrix. The incorporation of SnO2 nanoparticles gives rise to the red shift of π–π1 transition of polyaniline. Thermal stability of PANI and PANI/SnO2 nanocomposite was investigated by thermogravimetric analysis (TGA). PANI/SnO2 nanocomposite observed maximum conductivity (6.4 × 10?3 scm?1) was found 9 wt% loading of PANI in SnO2.  相似文献   

5.
Conductive polyaniline (PANI) was electropolymerized on undoped 100 nm diamond powders in sulphuric acid solution containing aniline to improve the conductivity and the electrochemistry of the nano- or submicro-scaled diamond particles. Cyclic voltammetry (CV) experiment was carried out at an upper potential of 1.1 V in initial sweeps and a potential range of ?0.2–0.9 V for the growth of PANI on a diamond powder electrode. Field emission-scanning electron microscope (FESEM) result reveals that the diamond particles were well coated by PANI films with globular or fibroid surface morphology. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were employed to investigate the electrochemical properties of the PANI/diamond composite electrode. It presents lower resistance and better capacitance than the pristine diamond powder.  相似文献   

6.
We prepared polyaniline-poly(4-styrenesulfonate) nanoparticles (PANI/PSS-NPs) by chemical oxidation polymerization in aqueous solution. We investigated the potential of the PANI/PSS-NPs to be used as an anode electrode for electrochromic devices and the effect of Li+ insertion (or deinsertion) kinetics and diffusion of Li+. A uniform electrochromic layer of PANI/PSS-NPs with a size of ca. 28 nm could be obtained by a solution process, specifically spin coating. The PANI/PSS-NPs film has a high Li+ diffusion coefficient (~7.7 × 10?9 cm2 s?1) and low charge transfer resistance (~99 Ω), which result in its having a fast electrochromic response time (coloring time <1.7 s, bleaching time <2.4 s), and high coloration efficiency (>108 cm2 C?1).  相似文献   

7.
A novel and highly sensitive visible-light photoelectrochemical (PEC) sensor for the detection of 2,4-D has been developed using a nanocomposite of molecularly imprinted gold nanoparticles-polypyrrole polymer (MIP) modified BiOI nanoflake arrays (BiOINFs) as a photoactive electrode (labeled as MIP@BiOINFs). Our results demonstrate that the smart combination of BiOINFs with MIP offers a high-performance photoactive sensing platform. It features the intrinsically excellent visible-light responsive properties of BiOI and prominent recognition ability from MIP. The designed MIP@BiOINF composite dramatically facilitates the PEC determination of 2,4-D. The detection limit for 2,4-D is found to be as low as about 0.04 ng mL 1 (S/N = 3). Moreover, the resulting sensor could be used to detect 2,4-D in spiked soil samples.  相似文献   

8.
Nano-structured Li3V2(PO4)3/carbon composite (Li3V2(PO4)3/C) has been successfully prepared by incorporating the precursor solution into a highly mesoporous carbon with an expanded pore structure. X-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy were used to characterize the structure of the composites. Li3V2(PO4)3 had particle sizes of < 50 nm and was well dispersed in the carbon matrix. When cycled within a voltage range of 3 to 4.3 V, a Li3V2(PO4)3/C composite delivered a reversible capacity of 122 mA h g? 1 at a 1C rate and maintained a specific discharge capacity of 83 mA h g? 1 at a 32C rate. These results demonstrate that cathodes made from a nano-structured Li3V2(PO4)3 and mesoporous carbon composite material have great potential for use in high-power Li-ion batteries.  相似文献   

9.
In this study, a new electrically conducting nanosized Ag–PANI–silica complex, in which nano-silver is bound to silica and polyaniline (PANI), has been synthesized by using γ-irradiation at room temperature and not by using polyvinylpyrrolidone (PVP) as a colloidal stabilizer. The conductivity of nanosized Ag–PANI–silica complex was determined by using the Van der PauW method, and the complex turned out to have a high semi-conductivity (200 S/cm). The optical property and morphology were characterized by using a UV–vis spectrophotometer, field emission-scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The optical absorption bands of UV–vis analysis revealed a peak at 262, 368, and a slowly decreasing band at 600–800 nm originating from the a nanosized Ag–PANI–silica complex. FE-SEM and TEM showed that the nanosized Ag–PANI–silica complex has a particle size ranging from 10 to 30 nm and high stability. The nano-complex prepared by γ-irradiation can be applicable to be used as biosensor materials.  相似文献   

10.
A polymer electrolyte with interconnected pores based on poly(vinylidene difluoride-co-hexafluoropropylene) [P(VDF-HFP)] copolymer was prepared by a simple phase separation process using water as both non-solvent and pore inducer. The prepared porous membrane was characterized by SEM, XRD and DSC. With a narrow pore size distribution and low crystallinity, the resulting polymer electrolyte shows a high ionic conductivity up to 1.76 × 10−3 S cm−1 at room temperature and exhibits low apparent activation energy of 10.35 kJ mol−1 for the transportation of ions. Its low cost and environmentally friendliness provide great promise for the practical application in polymer lithium-ion batteries.  相似文献   

11.
In this work the effect of relative humidity (RH) and formaldehyde (H2CO) concentration on Pb corrosion was investigated; a possible synergism between the aldehyde and CO2 effects was also considered. Triphasic aqueous salt solutions were used to produce 54% and 75% RH that, together with the 100% RH condition, were combined with 0, 0.62, 55 and 2.0 102 mg m−3 formaldehyde concentrations to compose the wanted environments.The results pointed to the conclusion that even at low RH (54%) formates are produced at the metal surface as a consequence of formaldehyde adsorption, indicating that the aldehyde has an active role in Pb corrosion; formates were also observed at relatively low H2CO concentration (0.62 mg m−3). No synergism between formaldehyde and carbon dioxide were observed as demonstrated by the Raman images from a corroded Pb coupon, showing that formate and carbonate contributions to the corrosion products were not spatially related.When compared to other volatile organic compounds (VOCs), formaldehyde harmful effect towards metals is frequently underestimated and the results here reported clearly indicate that, even at low RH, its concentration in indoor environments, where it tends to be produced and accumulated, has to be carefully controlled.  相似文献   

12.
The effect of gamma-irradiation on keeping quality of peach fruit was studied. The fruit, after harvesting at proper maturity stage, was irradiated in the dose range of 1.0–2.0 kGy, stored under ambient (temp. 25±2 °C, RH 70%) and refrigerated (temp. 3±1 °C, RH 80%) conditions and evaluated periodically for firmness, total soluble solids (TSS), anthocyanins, water-soluble pectic fractions, loss in weight and decay percentage. The anthocyanin evaluation of the fruits revealed that irradiation enhanced the colour development under both the storage conditions. The gamma-irradiation dose range of 1.2–1.4 kGy proved effective in maintaining higher TSS concentration, reducing weight loss and significantly (p⩽0.05) delaying the decaying of the fruit by 6 days under ambient conditions and by 20 days under refrigerated storage conditions.  相似文献   

13.
Gold nanoparticles/carbon nanotubes (Au-NPs/CNTs) composites were rapidly synthesized by microwave radiation, and firstly applied for the determination of trace mercury(II) by anodic stripping voltammetry (ASV). The structure and composition of the synthesized Au-NPs/CNTs nanocomposites were characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), UV–vis absorption spectroscopy and cyclic voltammetry. Au-NPs/CNTs nanocomposites modified glassy carbon electrode (Au-NPs/CNTs/GCE) exhibited excellent performance for Hg(II) analysis. A wide linear range (5 × 10−10–1.25 × 10−6 mol/L) and good repeatability (relative standard deviation of 1.84%) were obtained for Hg(II) detection. The limit of detection was found to be 3 × 10−10 mol/L (0.06 μg/L) at 2 min accumulation, while the World Health Organization’s guideline value of mercury for drinking water is 1 μg/L, suggesting the proposed method may have practical utility.  相似文献   

14.
A combined electrochemical route involving electrophoresis and electrodeposition is developed to fabricate a large-area unsupported nickel inverse opaline film with thickness less than 10 μm. A vertical electrophoresis allows for the packing of 495 nm polystyrene microspheres on an ITO-coated glass to form a colloidal crystal with significantly reduced defects. Subsequently, a nickel electrodeposition is employed to fill the interstitial voids among the close-packed polystyrene microspheres, followed by the removal of the colloidal template in a two-stage process, leaving a robust nickel skeleton with hexagonally arranged pores and interconnected pore channels. This nickel skeleton is then detached from the ITO-coated glass via a liquid nitrogen treatment, rendering a free-standing nickel inverse opaline film in 2 × 2 cm2. Porometer measurements indicate a narrow pore size distribution consistent with images from scanning electron microscope. We determine that the intensity ratio of (111)/(100) diffraction peak is an indicator for the strength of the Ni inverse opals, and thus affects its structural integrity upon detachment from the ITO-coated glass.  相似文献   

15.
A polyaniline-modified screen-printed carbon electrode (PANI/SPCE) was prepared by electropolymerization for the construction of a novel disposable cell impedance sensor. The conductive polymer improved greatly the electron transfer of SPCE and was very effective for cell immobilization. The adhesion of cells increased the electron transfer resistance (Ret) of redox probe on the PANI/SPCE surface, producing an impedance sensor for K562 leukaemia cells with a semilogarithm linear range from 104 to 107 cells ml−1 and a limit of detection of 8.32 × 103 cells ml−1 at 10σ. The proliferation of cells on the conductive polymer increased the Ret, leading to a novel way to monitor the growth process of cells on the PANI/SPCE. The electrochemical monitoring indicated K562 leukaemia cells cultured in vitro on the PANI surface were viable for 60 h, consistent with the analysis from microscopic imaging and MTT assay. This method for monitoring the surface proliferation and detecting the number of viable cells was simple, low-cost and disposable, thus providing a convenient avenue for electrochemical study of cell immobilization, adhesion, proliferation and apoptosis.  相似文献   

16.
A novel high-performance electrode material based on fibrillar polyaniline (PANI) doped with graphene oxide sheets was synthesized via in situ polymerization of monomer in the presence of graphene oxide, with a high conductivity of 10 S cm?1 at 22 °C for the obtained nanocomposite with a mass ratio of aniline/graphite oxide, 100:1. Its high specific capacitance of 531 F/g was obtained in the potential range from 0 to 0.45 V at 200 mA/g by charge–discharge analysis compared to 216 F/g of individual PANI. The doping and the ratio of graphene oxide have a pronounced effect on the electrochemical capacitance performance of the nanocomposites.  相似文献   

17.
In this study, well-ordered and vertically-aligned nickel nanowires (NiNWs) with a controllable length were grown inside the nanopores of anodic alumina oxide templates (AAOTs) using a simple electrochemical deposition (ECD) method. The electron field emission characteristics of the prepared NiNWs within AAOTs with two pore diameters (100 and 200 nm) and length in the range of 2.7–22 μm were measured and discussed. The turn-on field/the enhancement factor of 8.5 and 7-μm-long NiNWs prepared within 100 and 200 pore diameter AAOTs, respectively, were about 3.46 V/μm/17,621 and 4.8 V/μm/5001, respectively, according to I–V measurements.  相似文献   

18.
Mesoporous silica supports are proposed as an alternative to polymeric stationary phases for fast affinity chromatography due to their better mechanical strength compared to polymers. Ideal supports should combine high surface area and large pore size to allow a high loading capacity of large molecules, such as proteins, and favor their accessibility. Increasing the pore size of large-surface area micelle-templated silicas (SBA-15, KIT-6) has been achieved by swelling the micelles by the addition of organic molecules and increasing synthesis time and temperature. The pore size of hexagonal silica mesostructured SBA-15 has been increased up to 35 nm. These materials could find therefore application as affinity chromatography for immunoextraction.  相似文献   

19.
Spongy-like NaTaO3 mesoporous microspheres are assembled from nanoparticles via imperfect oriented attachment. Study shows that the NaTaO3 spongy microspheres with the diameters of ~1 μm are composed of the fundamental building blocks of ~50 nm NaTaO3 nanospheres. The high-resolution transmission electron microscopy further reveals that these fundamental building blocks are assembled from primary building blocks of ~10 nm NaTaO3 nanocrystals. The pore diameters of these spongy microspheres are ca. 30 nm and the Brunauer–Emmett–Teller (BET) surface area is calculated to be 57.8 m2 g?1. This interesting ternary alkali metal composite oxide of NaTaO3 spongy microspheres with high specific surface area and strong stability will be favorable for their practical application in photocatalysis. This synthesis route may throw light on the fabrication of the binary or ternary porous metal oxides by geometrical stacking of the nanobuilding blocks via imperfect oriented attachment.  相似文献   

20.
We demonstrate that small and narrow hydrophilic conducting domain morphology in sulfonated aromatic membranes leads to much better fuel cell performance at medium temperature and low humidity conditions than those with larger hydrophilic domains. A comparison of three types of sulfonated poly(arylene ether sulfone)s (SPAES) with random, block, and graft architecture indicates that small hydrophilic domain sizes (< 5 nm) appear to be important in supporting water retention under low relative humidity (RH) conditions intended for medium temperature (> 100 °C) fuel cell applications. The graft copolymer outperformed both a random copolymer and multiblock copolymer at 120 °C and 35% RH fuel cell operating conditions due to capillary condensation of water within the 3–5 nm hydrophilic domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号