首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The paper describes the processes of elastic deformation of thin films under mechanical loading. The film is modeled longitudinally by a compressed plate arranged on an elastic foundation. A computer model of the buckling of the narrow thin plate with a delamination portion located on an elastic foundation is constructed. This paper also touches upon the supercritical behavior of the plate–substrate system. The experiments on the axial compression of a metal strip adhered to a rubber plate are performed, and 2 to 7 buckling modes are obtained therein. The critical loads and buckling modes obtained in the numerical calculations are compared with the experimental data. It is shown that there is the possibility of progressive delamination of the metal plate from the foundation if the critical load is exceeded. It is found that the use of the proposed approach, which, in contrast to other approaches, accounts for the elastic deformation of the substrate, causes the dependence between the critical bending stress and the stiffness of the foundation.  相似文献   

2.
3.
We study the buckling of a thin compressed elastic film bonded to a compliant substrate. We focus on a family of buckling patterns, such that the film profile is generated by two functions of a single variable. This family includes the unbuckled configuration, the classical primary mode made of straight stripes, as well the pattern with undulating stripes obtained by a secondary instability investigated in the first companion paper, and the herringbone pattern studied in last companion paper. A simplified buckling model relevant for the analysis of these patterns is introduced. It is solved analytically for moderate or for large residual compressive stress in the film. Numerical simulations are presented, based on an efficient implementation. Overall, the analysis provides a global picture for the formation of herringbone patterns under increasing residual stress. The film shape is shown to converge at large load to a developable shape with ridges. The wavelength of the pattern, selected in a first place by the primary buckling bifurcation, is frozen during the subsequent increase of loading.  相似文献   

4.
In a thin film-substrate system in-plane compressive stress is commonly generated in the film due to thermal mismatch in operation or fabrication process. If the stress exceeds a critical value, part of the film may buckle out of plane along the defective interface. After buckling delamination, the interface crack at the ends may propagate. In the whole process, the compliance of the substrate compared with the film plays an important role. In this work, we study a circular film subject to compressive stress on an infinitely thick substrate. We study the effects of compliance of the substrate by modeling the system as a plate on an elastic foundation. The critical buckling condition is formulated. The asymptotic solutions of post-buckling deformation and the corresponding energy release rate of the interface crack are obtained with perturbation methods. The results show that the more compliant the substrate is, the easier for the film to buckle and easier for the interface crack to propagate after buckling.  相似文献   

5.
The theory of small deformation superimposed on a large deformation of an elastic solid is used to investigate the buckling of anisotropic elastic plate under uniaxial compression. The buckling direction (the direction of buckling wave) is generally not aligned with the compression direction. The equation for determining the buckling direction is obtained. It is found that the out-of-plane buckling of anisotropic elastic plate is possible and both buckling conditions for flexural and extensional modes are presented. As a specific case of buckling of anisotropic elastic plate, the buckling of an orthotropic elastic plate subjected to a compression in a direction that forms an arbitrary angle with an elastic principal axis of the materials is analyzed. It is found that the buckling direction depends on the angle between the compression direction and the principal axis of the materials, the critical compressive force and plate-thickness parameters. In the case that the compression direction is aligned with the principal axis of the materials, the buckling direction will be aligned with the compression one irrespective of critical compressive force and plate-thickness. Project supported by the National Natural Science Foundation of China (No. 19772032).  相似文献   

6.
形状记忆聚合物具有形状变化后在特定条件下可恢复的特点,因此作为一种柔性基底材料在柔性电子中得到广泛应用。对于形状记忆聚合物基底和弹性薄膜组成的双层结构,当 基底收缩时,其表面的弹性薄膜可以形成屈曲波形。针对基底收缩过程中波形的变化, 本文实验测得形状记忆聚合物材料在不同温度下的 属性,结合一维应变恢复函数,利用柔性基底表面薄膜屈曲波形参数(波幅、波长等)表达式,求解得到了在基底收缩的过程中,弹性薄膜屈曲波形的变化规律,和实验结果吻合很好。  相似文献   

7.
This paper presents a nonlinear mathematical model for evolution of wrinkle patterns of an anisotropic crystal film on a viscoelastic substrate layer. The underlying mechanism of wrinkling has been generally understood as a stress-driven instability. Previously, theoretical studies on wrinkling have assumed isotropic elastic properties for the film. Motivated by recent experimental observations of ordered wrinkle patterns in single-crystal thin films, this paper develops a theoretical model coupling anisotropic elastic deformation of a crystal film with viscoelastic deformation of a thin substrate layer. A linear perturbation analysis is performed to predict the onset of wrinkling instability and the initial evolution kinetics. An energy minimization method is adopted to analyze wrinkle patterns in the equilibrium states. For a cubic crystal film under an equi-biaxial compression, orthogonally ordered wrinkle patterns are predicted in both the initial stage and the equilibrium state. This is confirmed by numerical simulations of evolving wrinkle patterns. By varying the residual stresses in the film, numerical simulations show that a variety of wrinkle patterns (e.g., orthogonal, parallel, zigzag, and checkerboard patterns) emerge as a result of the competition between material anisotropy and stress anisotropy.  相似文献   

8.
管箫  张锴  郑百林 《力学季刊》2021,42(2):217-229
为了研究硅电极在充放电过程中的应力演化,在忽略弹性变形的情况下提出了一个考虑粘塑性的简化力学模型,分别导出了出现相分离和不出现相分离时薄膜电极内应力场的解析解,该模型的计算结果与现有的实验结果相吻合.计算结果表明,当存在相分离时,电极中的应力取决于薄膜电极的厚度和充电速率的乘积;在未出现相分离现象时,应力仅取决于充电速...  相似文献   

9.
Summary The present paper discusses how to reduce the applied electric potential which controls a distribution of the elastic displacement, when temperature change induces elastic deformation in a piezoelectric-based solid state actuator. The actuator consists of an isotropic structural plate, onto which multiple piezoelectric ceramic plates of crystal class 6mm are perfectly bonded. The analysis of this thermoelastic problem leads to electric potential applied to piezoelectric ceramic plates. Numerical calculations are carried out for an isotropic steel plate, onto which multiple cadmium-selenide plates are perfectly bonded. Finally, it is shown that the maximum applied electric potential in the case of ten cadmium selenide plates can be reduced to 11% of that derived from the previous study of a similar problem of one cadmium selenide plate bonded onto an isotropic steel plate. Received 10 September 1998; accepted for publication 23 March 1999  相似文献   

10.
When the thicknesses of thin films reduce to microns or even nanometers, surface energy and surface interaction often play a significant role in their deformation behavior and surface morphology. The spinodal surface instability induced by the van der Waals force in a soft elastic thin film perfectly bonded to a rigid substrate is investigated theoretically using the bifurcation theory of elastic structures. The analytical solution is derived for the critical condition of spinodal surface morphology instability by accounting for the competition of the van der Waals interaction energy, elastic strain energy and surface energy. Detailed examinations on the effect of surface energy, thickness and elastic properties of the film show that the characteristic wavelength of the deformation bifurcation mode depends on the film thickness via an exponential relation, with the power index in the range from 0.749 to 1.0. The theoretical solution has a good agreement with relevant experiment results.  相似文献   

11.
The wrinkling of a stiff thin film bonded on a soft elastic layer and subjected to an applied or residual compressive stress is investigated in the present paper. A three-dimensional theoretical model is presented to predict the buckling and postbuckling behavior of the film. We obtained the analytical solutions for the critical buckling condition and the postbuckling morphology of the film. The effects of the thicknesses and elastic properties of the film and the soft layer on the characteristic wrinkling wavelength are examined. It is found that the critical wrinkling condition of the thin film is sensitive to the compressibility and thickness of the soft layer, and its wrinkling amplitude depends on the magnitude of the applied or residual in-plane stress. The bonding condition between the soft layer and the rigid substrate has a considerable influence on the buckling of the thin film, and the relative sliding at the interface tends to destabilize the system.  相似文献   

12.
Mechanics of living tissues focusing on the relationships between growth, morphology and function is not only of theoretical interest but can also be useful for diagnosis of certain diseases. In this paper, we model the surface wrinkling morphology of mucosa, the moist tissue that commonly lines organs and cavities throughout the body, induced by either physiological or pathological volumetric growth. A theoretical framework of finite deformation is adopted to analyze the deformation of a cylindrical cavity covered by mucosal and submucosal layers. It is shown that compressive residual stresses induced by the confined growth of mucosa can destabilize the tissue into various surface wrinkling patterns. A linear stability analysis of the critical condition and characteristic buckling patterns indicates that the wrinkling mode is sensitive to the thicknesses of the mucosal and submucosal layers, as well as the properties of the tissues. The thinner the mucosal layer and the lower its elastic modulus, the shorter the buckling wavelength. A series of finite element simulations are performed to validate the theoretical predictions and to study local wrinkling or non-uniform patterns associated with inhomogeneous growth. Our postbuckling analysis shows that the surface pattern may evolve towards a period-doubling morphology due to continuous growth of mucosa or submucosa beyond the critical state. Finally, the theoretical predictions and numerical simulations are compared to experimental observations.  相似文献   

13.
The local-buckling-induced elastic interaction between two circular inclusions in a free-standing film is reported using numerical simulation. The simulation relies on a continuum model based on the modified Föppl-von Kármán plate theory for a film with arbitrarily distributed eigenstrain and eigencurvature. It is shown that due to the overlapping of the nonlinear local buckling the elastic interaction between the two inclusions with the same eigencurvature is repulsive, while the interaction between them with the opposite eigencurvature is attractive. The interaction strength in both cases decays with their mutual distance. In addition, the inclusion with positive/negative eigenstrain above critical values can trigger an axisymmetric/non-axisymmetric buckling, respectively, and the buckling induced elastic interaction between the two inclusions with eigenstrain shows a nonmonotonic behavior.  相似文献   

14.
The paper focuses on wrinkling of lined pipes (sometimes referred to as clad pipes) under bending loading, where a corrosion-resistant thin-walled liner is fitted inside a carbon–steel outer pipe. The problem is solved numerically, using nonlinear finite elements to simulate liner pipe deformation and its interaction with the outer pipe. Stresses and strains are monitored throughout the deformation stage, detecting possible detachment of the liner from the outer pipe and the formation of wrinkles. The wrinkling behavior of elastic and elastic–plastic (steel) lined pipes under bending is examined. The results indicate that the lateral confinement of the liner pipe due to the deformable outer pipe and its interaction with the outer pipe has a decisive influence on the wrinkling behavior of the lined pipe. It is also shown that the behavior is characterized by a first bifurcation in a uniform wrinkling pattern, followed by a secondary bifurcation. The values of corresponding buckling curvature are determined and comparison with available experimental results is conducted in terms of wrinkle height development and the corresponding buckling wavelength. The results of the present research can be used for safer design of lined pipes in pipeline applications.  相似文献   

15.
杨昌锦  李尧臣 《力学学报》2009,41(4):489-502
基于弹性有限变形理论和电弹性体偏场理论,对半无限压电体及其表面电极层间存在穿透脱层的屈曲问题进行了分析. 采用平面应变模型,在脱层远处作用有平行于脱层的应变载荷. 使用Fourier积分变换,应用脱层界面的连续条件和电极表面的边界条件将问题归为第2类Cauchy型奇异积分方程组. 利用Gauss-Chebyshev积分公式将奇异积分方程组变为齐次线性代数方程组,以确定临界应变载荷. 通过数值算例,给出了底层为PZT-4材料、电极为金属Pt在不同的脱层长厚比时的临界应变载荷和屈曲形状,分析了压电体的压电、介电效应对屈曲载荷的影响. 另外给出了脱层屈曲时,脱层尖端奇异性振荡因子随不同脱层长厚比的关系曲线.   相似文献   

16.
The elastic properties of ZnO nanofilms with different film thickness, surface orientations and loading directions are investigated by using molecular mechanics (MM) method. The size dependence of elastic properties is relevant to both the film surface crystallographic orientation and loading direction. Both atomic structure analysis and energy calculation are employed to identify the mechanisms of the size-dependent elastic properties, under different loading directions and surface orientations. Upon small axial deformation, the relationship between intralayer and interlayer bond length variation and film elastic stiffness is established; it is found that the atomic layers with larger bond length variation have higher elastic stiffness. The strain energies of atomic layers of ZnO nanofilm and bulk are decoupled, from which the stiffness of film surface, intralayers, and interlayers are derived and compared with their bulk counterparts. The surface stiffness is found to be much lower than that of the interior layers and bulk counterpart, and with the decrease of film thickness, the residual tension-stiffened interior atomic layers are the main contributions of the increased elastic modulus of ZnO nanofilms.  相似文献   

17.
Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is applied to measure the out-of-plane deformation of structures with one-shot projection.Through color fringe recognizing,decoding and triangulation processing for the captured images corresponding to each deformation state,the feasibility of the method is testified by the measurement of elastic deflections of a flexible square plate,showing good agreement with those from the calibrated displacement driver.The plastic deformation of two alloy aluminum rectangular tubes is measured to show the technique application to surface topographic evaluation of the buckling structures with large displacements.  相似文献   

18.
The elastic properties of ZnO nanofilms with different film thickness, surface orientations and loading directions are investigated by using molecular mechanics (MM) method. The size dependence of elastic properties is relevant to both the film surface crystallographic orientation and loading direction. Both atomic structure analysis and energy calculation are employed to identify the mechanisms of the size-dependent elastic properties, under different loading directions and surface orientations. Upon small axial deformation, the relationship between intralayer and interlayer bond length variation and film elastic stiffness is established; it is found that the atomic layers with larger bond length variation have higher elastic stiffness. The strain energies of atomic layers of ZnO nanofilm and bulk are decoupled, from which the stiffness of film surface, intralayers, and interlayers are derived and compared with their bulk counterparts. The surface stiffness is found to be much lower than that of the interior layers and bulk counterpart, and with the decrease of film thickness, the residual tension-stiffened interior atomic layers are the main contributions of the increased elastic modulus of ZnO nanofilms.  相似文献   

19.
Projection moiré is frequently used to examine the out-of-plane displacement of thin-walled shells during buckling. One way of implementing this technique is to use double exposure photography to superimpose the initial and deformed images of a grating projected onto the surface of the specimen. This generates a pattern of fringes representative of points of equal displacement, thus presenting a snapshot of the full-field buckling behavior. This paper outlines a technique to extend this method to provide a computer generated real-time fringe pattern throughout the whole buckling and post-buckling process. This is achieved by using a CCD camera and specially developed processing software to continuously superimpose the initial image of the grating (i.e., the first frame of the captured video) onto subsequent frames in which this grating is deformed due to the displacement. This method produces series of fringes in digital format, which are ideal for further processing.  相似文献   

20.
Waves on the surface of a thin film of a viscous dielectric fluid flowing down the inner surface of one plate of a plane capacitor with alternating voltage applied is considered. It is shown that the volume forces acting from the inhomogeneous electric field are negligibly small in the case of long waves, and the influence of the electric field reduces to the influence of additional pressure onto the film surface. A model equation for determining the deviation of the film thickness from the undisturbed value is derived in the long-wave approximation. Some numerical solutions of this equation are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号