首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
宋亚勤 《力学学报》2010,42(4):758-764
本文用光学探测方法研究了半导体硅悬臂梁的振动问题;运用基于外差干涉原理的实验装置得到了悬臂梁在激光激励下的振动响应(振动振幅和相位随调制激光频率的变化);采用等离子波和热弹性波的数学模型,对悬臂梁的振动进行了理论分析;可看到实验与理论模拟结果吻合很好,同时通过分析可得振动相位与调制激光频率的平方根之间有线性关系。关键词词: 光学探测, 硅悬臂梁,振动.   相似文献   

2.
The present investigation is concerned with the wave propagation at an interface of a micropolar generalized thermoelastic solid half space and a heat conducting micropolar fluid half space. Reflection and transmission phenomena of plane waves are investigated, which impinge obliquely at the plane interface between a micropolar generalized thermoelastic solid half space and a heat conducting micropolar fluid half space.The incident wave is assumed to be striking at the interface after propagating through the micropolar generalized thermoelastic solid. The amplitude ratios of various reflected and transmitted waves are obtained in a closed form. It is found that they are a function of the angle of incidence and frequency and are affected by the elastic properties of the media. Micropolarity and thermal relaxation effects are shown on the amplitude ratios for a specific model. The results of some earlier literatures are also deduced from the present investigation.  相似文献   

3.
Thermoelastic damping is recognized as a significant loss mechanism at room temperature in micro-scale beam resonators. In this paper, the governing equations of coupled thermoelastic problems are established based on the generalized thermoelastic theory with one relaxation time. The thermoelastic damping of micro-beam resonators is analyzed by using both the finite sine Fourier transformation method combined with Laplace transformation and the normal mode analysis. The vibration responses of deflection and thermal moment are obtained for the micro-beams with simply supported and isothermal boundary conditions. The vibration frequency is analyzed for three boundary condition cases, i.e., the clamped and isothermal, the simply supported and isothermal, and the simply supported and adiabatic. The analytic results show that the amplitude of deflection and thermal moment are attenuated and the vibration frequency is increased with thermoelastic coupling effect being considered. In addition, it can be found from both the analytic results and the numerical calculations that these properties are size-dependent. When the thickness of the micro-beam is larger than its characteristic size, the effect of thermoelastic damping weakens as the beam thickness increases. The size-effect induced by thermoelastic coupling would disappear when the thickness of the micro-beam is over a critical value that depends on the material properties and the boundary conditions.  相似文献   

4.
The constitutive relations and field equations for anisotropic generalized thermoelastic diffusion are derived and deduced for a particular type of anisotropy, i.e. transverse isotropy. Green and Lindsay (GL) theory, in which, thermodiffusion and thermodiffusion–mechanical relaxations are governed by four different time constants, is selected for study. The propagation of plane harmonic thermoelastic diffusive waves in a homogeneous, transversely isotropic, elastic plate of finite width is studied, in the context of generalized theory of thermoelastic diffusion. According to the characteristic equation, three quasi-longitudinal waves namely, quasi-elastodiffusive (QED-mode), quasi-massdiffusive (QMD-mode) and quasi-thermodiffusive (QTD-mode) can propagate in addition to quasi-transverse waves (QSV-mode) and the purely quasi-transverse motion (QSH-mode), which is not affected by thermal and diffusion vibrations, gets decoupled from the rest of the motion of wave propagation. The secular equations corresponding to the symmetric and skew symmetric modes of the plate are derived. The amplitudes of displacements, temperature change and concentration for symmetric and skew symmetric modes of vibration of plate are computed numerically. Anisotropy and diffusion effects on the phase velocity, attenuation coefficient and amplitudes of wave propagation are presented graphically in order to illustrate and compare the analytically results. Some special cases of frequency equation are also deduced from the existing results.  相似文献   

5.
《力学快报》2020,10(4):286-297
The nonlinear thermoelastic responses of an elastic medium exposed to laser generated shortpulse heating are investigated in this article. The thermal wave propagation of generalized thermoelastic medium under the impact of thermal loading with energy dissipation is the focus of this research. To model the thermal boundary condition(in the form of thermal conduction),generalized Cattaneo model(GCM) is employed. In the reference configuration, a nonlinear coupled Lord-Shulman-type generalized thermoelasticity formulation using finite strain theory(FST) is developed and the temperature dependency of the thermal conductivity is considered to derive the equations. In order to solve the time-dependent and nonlinear equations, Newmark's numerical time integration technique and an updated finite element algorithm is applied and to ensure achieving accurate continuity of the results, the Hermitian elements are used instead of Lagrangian's. The numerical responses for different factors such as input heat flux and nonlinear terms are expressed graphically and their impacts on the system's reaction are discussed in detail.The results of the study are presented for Green–Lindsay model and the findings are compared with Lord-Shulman model especially with regards to heat wave propagation. It is shown that the nature of the laser's thermal shock and its geometry are particularly determinative in the final stage of deformation. The research also concluded that employing FST leads to achieving more accuracy in terms of elastic deformations; however, the thermally nonlinear analysis does not change the results markedly. For this reason, the nonlinear theory of deformation is required in laser related reviews, while it is reasonable to ignore the temperature changes compared to the reference temperature in deriving governing equations.  相似文献   

6.
Probing the mechanism of ultrafast thermoelastic processes is becoming increasingly important with the development of laser-assisted micro/nano machining. Although thermoelastic models containing temperature rate have been historically proposed, the strain rate has not been considered yet. In this work, a generalized thermoelastic model is theoretically established by introducing the strain rate in Green–Lindsay (GL) thermoelastic model with the aid of extended thermodynamics. Numerically, a semi-infinite one-dimensional problem is considered with traction free at one end and subjected to a temperature rise. The problem is solved using the Laplace transform method, and the transient responses, i.e. displacement, temperature and stresses are graphically depicted. Interestingly, it is found that the strain rate may eliminate the discontinuity of the displacement at the elastic and thermal wave front. Also, the present model is compared with Green–Naghdi (GN) models. It is found that the thermal wave speed of the present model is faster than GN model without energy dissipation, and slower than GN model with energy dissipation. In addition, the thermoelastic responses from the present model are the largest. The present model based upon GL model is free of the jump of GL model in the displacement distribution, and is safer in engineering practices than GN model. The present work will benefit the theoretical modeling and numerical prediction of thermoelastic process, especially for those under extreme fast heating.  相似文献   

7.
In this paper, based on three-dimensional linear generalized thermoelasticity, an exact analysis of free vibration of a simply supported homogeneous isotropic, thermally conducting, cylindrical panel with voids initially at uniform temperature and undeformed state has been presented. Three displacement potential functions are introduced for solving the equations of motion, heat conduction and volume fraction field. The purely transverse wave gets decoupled from rest of motion and is not affected by thermal and volume fraction (voids) fields. After expanding the displacement potentials, volume fraction and temperature functions with orthogonal series, the equations of the considered vibration problem are reduced to five-second order coupled ordinary differential equations whose formal solution can be expressed by using Bessel functions with complex arguments. The corresponding results for thermoelastic panel without voids, elastic panel with and without voids have been deduced as special cases from the present analysis. In order to illustrate the analytical results, the numerical solutions of various relations and equations have been obtained to compute the lowest frequency as function of different cylindrical panel parameters. The computer simulated results have been presented graphically.  相似文献   

8.
吴华  邹绍华  徐成辉  尉亚军  邓子辰 《力学学报》2022,54(10):2796-2807
微纳科技的快速发展与超短脉冲激光技术的广泛运用, 对描述微纳尺度超快热冲击的广义热传导及其热弹耦合理论提出迫切需求. 基于拓展热力学原理, 本文建立了考虑热传导双相滞后效应和高阶热流率的广义热弹耦合理论. 类比于力学领域黏弹性本构关系的串联、并联模型, 并受Green-Naghdi (GN)广义热传导模型启发, 本文提出了热学“弹性”单元和“黏性”单元模型, 并采用串联、并联方法实现了Cattaneo-Vernotte (CV)、GN、双相滞后(DPL)和Moore-Gibson-Thompson (MGT) 热传导模型的重构. 理论推导进一步表明, 本文新建模型对应于热学Burgers模型, 并得到了新模型中各相位滞后中松弛时间之间的比例关系. 运用拉普拉斯变换方法, 研究了一维结构受边界热冲击和移动热源作用下的瞬态响应, 计算结果表明: 新模型克服了热波速度无限大的悖论; 仅有边界热冲击载荷时, 新模型得到的响应结果均较大, 响应范围最小; 相比于无热源作用情形, 受移动热源作用时, 新模型会产生更大的峰值响应. 新模型与经典弹性理论耦合构建了广义热弹性理论, 运用该理论, 可以清晰观察到在热波和弹性波波前的应力突变. 理论方面, 本文推动了拓展热力学与连续介质力学的结合, 对于远离平衡态极端力学基础理论问题的研究具有启发意义; 应用方面, 本文研究结果可为激光等移动热源作用下材料的瞬态响应分析提供理论基础和数值方法.   相似文献   

9.
Peng  Wei  Chen  Like  He  Tianhu 《应用数学和力学(英文版)》2021,42(6):855-870
In extreme heat transfer environments, functionally graded materials(FGMs)have aroused great concern due to the excellent thermal shock resistance. With the development of micro-scale devices, the size-dependent effect has become an important issue. However, the classical continuum mechanical model fails on the micro-scale due to the influence of the size-dependent effect. Meanwhile, for thermoelastic behaviors limited to small-scale problems, Fourier's heat conduction law cannot explain the thermal wave effect. In order to capture the size-dependent effect and the thermal wave effect, the nonlocal generalized thermoelastic theory for the formulation of an FGM microbeam is adopted in the present work. For numerical validation, the transient responses for a simply supported FGM microbeam heated by the ramp-type heating are considered.The governing equations are formulated and solved by employing the Laplace transform techniques. In the numerical results, the effects of the ramp-heating time parameter, the nonlocal parameter, and the power-law index on the considered physical quantities are presented and discussed in detail.  相似文献   

10.
The problem of reflection and transmission of plane waves incident on the contact surface of an elastic solid and an electro-microstretch generalized thermoelastic solid is discussed. It is found that there exist five reflected waves, i.e., longitudinal displacement (LD) wave, thermal (T) wave, longitudinal microstretch (LM) wave and two coupled transverse displacement and microrotational (CD(I) and CD(II)) waves in the electro-microstretch generalized thermoelastic solid, and two transmitted waves, i.e., longitudinal (P) and transverse (SV) waves in the elastic solid. The amplitude ratios of different reflected and transmitted waves are obtained for an imperfect boundary and deduced for normal force stiffness, transverse force stiffness, and perfect bonding. The variations of amplitude ratios with incidence angles have been depicted graphically for the LD wave and the CD(I) wave. It is noticed that the amplitude ratios of reflected and transmitted waves are affected by the stiffness, electric field, stretch, and thermal properties of the media. Some particular interest cases have been deduced from the present investigations.  相似文献   

11.
计及材料物性与温度的相关性,基于Green-Naghdi能量无耗散广义热弹性理论(G-N II理论),对热冲击下具有变物性特征材料的热弹性响应进行了求解分析。借助Laplace正、反变换技术以及Krichhoff变换,在热物性参数随真实温度呈线性规律的前提下,推导了半无限大体受热冲击作用时热弹性响应的解析表达式,通过求解分析,得到了热冲击下热波、热弹性波的传播规律,位移场、温度场以及应力场的分布情况,以及物性随温度相关性对热弹性响应的影响效果。结果表明:当考虑材料物性随温度的变化时,热波、热弹性波的传播以及各物理场的分布均受到不同程度的影响,且物性随温度相关性对热弹性响应的作用效果将受到材料热-力耦合特性的影响。  相似文献   

12.
Based on the Lord and Shulman generalized thermoelasticity theory with one relaxation time, an isotropic semi-infinite plate subjected to a moving heat source has been studied by employing the finite element method directly in time domain, whose distributions of nora dimensional temperature, displacement and stress are illustrated graphically. The results show that the present method is an effective and exact numerical one for solving the thermoelastic coupling problem and is capable of overcoming the defects of traditional integrated transformation and inverse integrated transformation methods. At the same time, the temperature step of the thermal wave front is obtained exactly in contrast with conventional numerical transformation methods.  相似文献   

13.
The present paper concentrates on the study of reflection and refraction characteristics of plane waves at an imperfectly bonded interface of two orthotropic generalized thermoelastic rotating half-spaces with different elastic and thermal properties. In this type of problem of orthotropic thermoelastic rotating medium, there are three types of plane waves quasi longitudinal (QL-) wave, quasi thermal (T-mode) wave and quasi transverse (QT-) wave, whose velocities depend on the angle of incidence, imperfection and rotation. The amplitude ratios of reflected waves to that of incident one in each case have been derived. Some special cases of boundaries, i.e. normal stiffness, transverse stiffness, thermal contact conductance, slip boundary and welded contact boundary have been deduced from an imperfect one. Effect of rotation on the amplitude ratios of different reflected and refracted waves with respect to incident QL-wave at different boundaries have been studied graphically. It is observed that thermal properties, imperfect boundary and rotation have significant effect on the propagation of waves.  相似文献   

14.
In this article, the wave propagation in a generalized thermoelastic solid cylinder of arbitrary cross-section is discussed, using the Fourier expansion collocation method. The solid medium is assumed to be linear, isotropic, and dependent on the rate of temperature. Three displacement potential functions are introduced, to uncouple the equations of motion and the heat conduction. By imposing the continuity conditions the frequency equation corresponding to the problem is obtained using the Fourier expansion collocation method based on Suhubi’s generalized theory [Suhubi, E.S., 1975. Thermoelastic Solids. In: Eringen, A.C. (Ed.), Continuum Physics, vol. 2. Academic, New York, Chapter 2]. To compare the model with the existing literature, the results of a generalized thermoelastic solid cylinder are obtained and they are compared with the results of Erbay and Suhubi [Erbay, E.S., Suhubi, E.S., 1986. Longitudinal wavepropagationed thermoelastic cylinder. J. Thermal Stresses 9, 279–295]. It shows very good degree of agreement. The computed non-dimensional wavenumbers are presented in figures for various values of the material parameters. The general theory can be used to study any kind of cylinders with proper geometrical relations.  相似文献   

15.
For a free vibration problem of a thermoelastic hollow sphere into the context of the generalized thermoelasticity theory with one relaxation time, exact analytic solutions are obtained with the use of eigenvalue approach. Both the inner and outer curved surfaces of the sphere are considered stress-free and isothermal surfaces. The dispersion relations for the existence of various types of possible modes of vibrations in the considered hollow sphere are derived. The numerical results have been presented graphically in respect of natural frequencies, thermoelastic damping, and frequency shift.  相似文献   

16.
This paper presents a theoretical thermoelastic coupled model for a thermal bimorph actuator driven by a harmonically varying thermal load in micro-electro-mechanical systems. The thermoelastic coupling, which arises from the coupling of the strain rate to the temperature field of the heat transport, is considered in this model. The frequency responses are simulated using the theorem of eigenmode expansion. The effects of thermoelastic coupling on the resonant frequency and the quality factor Q for each eigenmode resonance of the deflection are calculated and compared with the same effects resulted from air damping. It shows that for the example of an aluminum–polysilicon thermal bimorph actuator, the resonant frequencies are generally shifted downward with the order larger than that of air damping, whereas the influence of thermoelastic coupling on the Q is more significant than that of air damping under high vacuum level.  相似文献   

17.
In this paper, the propagation of guided thermoelastic waves in laminated orthotropic plates subjected to stress-free, isothermal boundary conditions is investigated in the context of the Green-Naghdi (GN) generalized thermoelastic theory (without energy dissipation). The coupled wave equations and heat conduction equation are solved by the Legendre orthogonal polynomial series expansion approach. The validity of the method is confirmed through a comparison. The dispersion curves of thermal modes and elastic modes are illustrated simultaneously. Dispersion curves of the corresponding pure elastic plate are also shown to analyze the influence of the thermoelasticity on elastic modes. The displacement and temperature distributions are shown to discuss the differences between the elastic modes and thermal modes.  相似文献   

18.
The present paper is devoted to the study of Rayleigh wave propagation in a homogeneous, transversely isotropic, thermoelastic diffusive half-space, subject to stress free, thermally insulated/isothermal, and chemical potential boundary conditions in the context of the generalized thermoelastic diffusion theory. The Green-Lindsay(GL) theory is used in the study. In this theory, thermodiffusion and thermodiffusion mechanical relaxations are governed by four different time constants. Secular equations for surface wave propagation in the considered media are derived. Anisotropy and diffusion effects on the phase velocity, attenuation coefficient are graphically presented in order to present the analytical results and make comparison. Some special cases of frequency equations are derived from the present investigation.  相似文献   

19.
论文基于非局部热弹性理论,研究了纳米半导体介质中波的反射问题.首先建立了在耦合的非局部弹性理论,波型热传导理论和等离子扩散理论下问题的控制方程;然后运用谐波法,得到耗散方程的解以及反射系数率的解析表达式;最后通过数值计算给出了硅纳米结构中相速度、群速度随非局部参数的变化,讨论了非局部参数、热电耦合参数以及热弹性耦合参数对反射系数率的影响.  相似文献   

20.
In this work, the generalized thermoelastic solutions with bounded boundaries for the transient shock problem are proposed by an asymptotic method. The governing equations are taken in the context of the generalized thermoelasticity with one relaxation time (L–S theory). The general solutions for any set of boundary conditions are obtained in the physical domain by the Laplace transform techniques. The corresponding asymptotic solutions for a thin plate with finite thickness, subjected to different sudden temperature rises in its two boundaries, are obtained by means of the limit theorem of Laplace transform. In the context of these asymptotic solutions, two specific problems with different boundary conditions have been conducted. The distributions of displacement, temperature and stresses, as well as the propagations, intersections and reflections of two elastic waves, named as thermoelastic wave and thermal wave separately, are obtained and plotted. These results are agreed with the results obtained in the existing literatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号