首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phenomenological one-dimensional constitutive model, characterizing the complex and highly nonlinear finite thermo-mechanical behavior of viscoelastic polymers, is developed in this investigation. This simple differential form model is based on a combination of linear and nonlinear springs with dashpots, incorporating typical polymeric behavior such as shear thinning, thermal softening at higher temperatures and nonlinear dependence on deformation and loading rate. Another model, of integral form, namely the modified superposition principle (MSP), is also modified further and used to show the advantage of the newly developed model over MSP. The material parameters for both models are determined for Adiprene-L100, a polyurethane based rubber. The constants once determined are then utilized to predict the behavior under strain rate jump compression, multiple step stress relaxation loading experiment and free end torsion experiments. The new constitutive model shows very good agreement with the experimental data for Adiprene-L100 for the various finite loading paths considered here and provides a flexible framework for a three-dimensional generalization.  相似文献   

2.
A three-nested-deformation model is proposed to describe crack-tip fields in rubber-like materials with large deformation.The model is inspired by the distribution of the measured in-plane and out-of-plane deformation.The inplane displacement of crack-tip fields under both Mode I and mixed-mode(Mode I-II) fracture conditions is measured by using the digital Moire’ method.The deformation characteristics and experimental sector division mode are investigated by comparing the measured displacement fields under different fracture modes.The out-of-plane displacement field near the crack tip is measured using the three-dimensional digital speckle correlation method.  相似文献   

3.
A comprehensive study of the thermo-mechanical response of a thermoplastic polymer, nylon 101 is presented. Quasi-static and dynamic compression uniaxial and multi-axial experiments (stress states) were performed at a wide range of strain rates (10−5 to 5000 s−1) and temperatures (−60 to 177 °C or −76 to 350 °F). The material is found to be non-linearly dependent on strain rate and temperature. The change in volume after plastic deformation is investigated and is found to be negligibly small. The relaxation and creep responses at room temperature are found to be dependent on strain rate and the stress–strain level at which these phenomena are initiated. Total deformation is decomposed into visco-elastic and visco-plastic components; these components have been determined at different levels of deformation. Results from non-proportional uniaxial to biaxial compression, and torsion experiments, are also reported for three different strain rates at room temperature. It is shown that nylon 101 has a response dependent on the hydrostatic pressure.  相似文献   

4.
The thermo-mechanical responses of Al 6061 before and after equal channel angular pressing (ECAP) at different strain rates and temperatures were measured. Al 6061 was solution heat treated before ECAP pressing at room temperature and subjected to up to three passes. After pressing, the billets were aged at 100 °C for 2 days. An as-received Al 6061-T651 was studied similarly to investigate the differences between processed and non-processed specimens. The responses of ECAP material were determined at −30, 22, 125 and 250 °C, and at strain rates from 10−5 to 2530 s−1; the 6061-T651 specimens were subjected to uniaxial compressive loading at −31, 22, 85, 150, 230 and 315 °C, and strain rates ranging from 10−5 to 2200 s−1. It was found that, the ECAP process increases the strength versus the T651 condition. Additionally, the Al 6061 ECAP is not sensitive to strain rate at room and lower temperatures, but the sensitivity increases as the number of passes and/or temperature are increased and this is the same for the non-processed material. Increasing the number of passes increases the flow stress at room and lower temperatures, has almost no effect at 125 °C and decreases at 250 °C. For both materials, the dynamic flow stress is higher than the stress at quasi-static strain rates even when the quasi-static strain rate regime is insensitive to strain rate. The Al 6061 has strong texture after one pass but steadily increases as the number of passes are increased. This is the first study that reports on the thermo-mechanical responses of ECAP and non-ECAP Al 6061 at such a wide range of strain rates, including dynamic, and temperatures.  相似文献   

5.
Based on the variational equation derived in ref. [1], a nonlinear incremental F.E. equation is formulated for unilateral contact elastic and plastic large deformation problems. A new technique-co-moving coordinate finite element method is introduced, and a practical mathematical model for large deformation contact problem is described. To show the effectiveness of the method, problems of contact large deformation of cantilever beam, circular plate, as well as metal ring are computed. Compared with experiments, the results show good agreements.  相似文献   

6.
On the basis of paper [1], assuming the logarithm of thickness at arbitrary point on a U-shaped bellows meridian is linear with the logarithm of distance between that point and axis of symmetry, perturbation solutions of the corresponding problems of large axisymmetrical deflection are given. The effects of thickness distribution variation, which result from technology factors, on stiffness of bellows are discussed.  相似文献   

7.
采用磁控溅射钛靶,以甲烷和氩气为前驱体,在单晶硅片表面制备了类富勒烯碳薄膜,采用高分辨率透射电子显微镜对薄膜的微观形貌进行了表征,采用纳米压痕仪测定了薄膜的硬度及弹性回复,在球-盘微摩擦试验机上考察了薄膜与不同偶件(Si3N4球、Al2O3球、钢球)对摩的摩擦学行为.结果表明,薄膜具有类富勒烯结构特征,薄膜的硬度为20.9 GPa,对应的弹性回复高达85%.薄膜的摩擦性能与摩擦偶件相关:FL-C薄膜与Si3N4球对摩时磨屑在Si3N4球接触面充分覆盖,所形成的转移膜充当固体润滑剂而有效降低了摩擦系数;FL-C薄膜与钢球对摩时,由于钢球硬度远低于FL-C薄膜硬度,导致钢球在较高的接触压力下发生变形而使其表面粗糙度变大,摩擦系数增大,且FL-C薄膜表面发生了较为强烈的摩擦氧化反应,破坏了薄膜的原始结构,新生成的氧化聚合物结构较为疏松,在摩擦剪切作用下易于发生磨损.  相似文献   

8.
9.
Isothermal fiber-spinning results have been obtained for an 1850 ppm solution of polyisobutylene with a constant viscosity of 360 poise and a relaxation time of 0.824 s. The steady and dynamic shear properties of this Boger fluid are well described by the Oldroyd B constitutive equation for shear rates less than 10 s−1. Velocity profiles and spinline stresses were measured for a variety of fiber drawdown ratios, spinline lengths and for shear rates within the range of applicability of the Oldroyd B model. The results are compared with the theory developed in Part I [4], and excellent agreement is obtained when the effects of gravity were propertly taken into account. Indeed, this is the first time that the correct stress levels in the extensional flow of a highly viscoelastic polymer solution have been predicted from a knowledge of viscometric data alone using a simple three-parameter constitutive equation.  相似文献   

10.
A series of experiments has been conducted on oxygen free high conductivity (OFHC) copper hollow cylinders under cyclic free-end torsion and biaxial tension–torsion at large strains. In addition, equations are developed to account for the finite rotation and strains in electrical resistance strain gages. In free-end cyclic torsion experiments with shear strain range equal to 23%, a significant strain in the axial direction is observed and it accumulates with a constant rate cycle by cycle. In the biaxial tension–torsion (multiaxial ratchetting) experiments, in which the primary (constant) axial stress is larger than the initial yield stress of the material, the loading conditions are varied to determine the influence of primary axial stress, cyclic shear strain range, pre-cyclic hardening and loading sequence on multiaxial ratchetting. Some important experimental features are high-lighted and recommended to help modeling efforts later.  相似文献   

11.
This paper follows the work of [1,2]. There are some progress in dealing with moderately small rotations (the squares of rotation angles are the order of magnitude of strains) of middle surface normals of inside and outside ring shells and compressed angle of bellows. Calculation results agree with experiments well. To bellow design, the method given in this paper is of practical value and the discussion of the influence of compressed angle on characteristic relation is helpful.  相似文献   

12.
This study presents an experimental investigation of the large plastic deformation of poly(ethylene terephthalate) (PET) submitted to plane strain compression. PET samples, obtained by injection moulding, annealed and non-annealed, were deformed using a specific compression device developed for this purpose. The obtained stress–strain curves at different temperatures and strain rates are useful for engineering applications and show a significant temperature dependence and a minor dependence on the strain rate. A softening temperature as a minimum temperature necessary to initiate deformation when a minimum, almost zero, stress is applied is introduced. This temperature, at the zero stress and strain limit, we denominate “Stress–Strain independent softening Temperature (T SOF)”. The T SOF values, 104 and 113°C for non-annealed and annealed PET, respectively, have been obtained using three different strain rates, indicating that the property is sensitive to the thermal history of the material.  相似文献   

13.
14.
Institute of Mechanics, Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 29, No. 9, pp. 3–18, September, 1993.  相似文献   

15.
The present paper is devoted to the study of the mechanical behavior of an ethylene propylene diene monomer (EPDM) rubber reinforced by polypropylene (PP) particles, revealed as compressible. The hyperlastic behavior of this blend has been characterized under cyclic uni-axial tensile tests. The experimental results show a significant effect of the fraction of (PP) particles (5%, 10%, 25% and 30% by weight) on the macroscopic behavior of the composite. In order to model this behavior, we first develop and implement a micromechanically-based nonlinear model for hyperelastic composites. The approach is based on the second order homogenization method proposed by Ponte Castaneda and Tiberio (2000) and for which suitable energy densities are adopted for the matrix and the inclusions phases, both assumed as compressible. We then proceed to the model verification by comparison with Finite Element simulations on a unit cell. Finally, we propose an extension of the model in order to take into account damage due to voids growth phenomena. The comparison of the multiscale damage model predictions with the experimental data obtained on the EPDM/PP composite indicates a very good agreement.  相似文献   

16.
How to effectively deal with non-linearity and accurately fulfill the consistency condition is essential for modeling and computing in plasticity. Utilizing the concepts of two phases and homogeneous coordinates, we obtain a linear representation of a constitutive model of perfect elastoplasticity with large deformation, and, furthermore, a linear irreducible representation, which contains a five-order spin tensor. The underlying vector space is found to be the projective realization of a composite space resulting from a surgery on Minkowski spacetime 5+1. The irreducible representation in the vector space admits of the projective proper orthochronous Lorentz group PSOo(5, 1) in the on (or elastoplastic) phase and the special Euclidean group SE(5) in the off (or elastic) phase. The input path dictates symmetry switching between the two groups. Based on such symmetry a numerical scheme is devised which preserves the consistency condition for every time step. The consistency scheme is shown to be stabler, more accurate, and more efficient than the current numerical schemes developed directly based upon the model itself, because the new scheme preserves the internal symmetry SOo(5, 1) of the model in the on phase so as to locate the stress point automatically on the yield surface at each time step without iterations at all.  相似文献   

17.
18.
We investigate the behaviour of a liquid jet stimulated by pressure disturbances using a photometric measurement of the jet shadow width. Two apparatuses involving lights of different nature are utilized and measurements are taken from the exit of the nozzle to drop breakoff for different operating conditions. Fourier analysis is applied to characterize the spatial evolution of the jet shape. In contrast to previous studies where only amplitudes of the Fourier modes are reported, phase shifts are also recovered for low and high initial perturbations. We show that the spatial reconstruction of the jet from the temporal Fourier analysis at different abscissae is in excellent agreement with the experimental profilesThis paper has benefited from stimulating discussions with A. Spohn. The authors wish to thank the Management of Toxot Science & Applications for permission to publish this work. They extend their appreciation to the Centre National de la Recherche Scientifique (Contracts No. 509721 and 509776) and to the Ministère de l'Enseignement Supérieur et de la Recherche (Grant No. 92 P 0645) for partially supporting this study. Thanks are due to J.L. Bély and C. Marteau for their technical assistance. Finally the authors are indebted to the referees for their valuable comments.  相似文献   

19.
The inelastic deformation behaviors of metals and polymers are discussed with the aim of finding a common base that would simplify academic and engineering analyses. Only monotonic loading conditions at room temperature are considered. For loading at different rates, nonlinear relations between loading rate and stress level, creep stress level and creep strain, and relaxation rate and stress were common to both type of materials. There are, of course, significant differences in elastic properties, strength levels and the strains involved. Special properties such as relaxation behaviors and creep anomalies can be qualitatively and quantitatively reproduced by the state variable model VBO (viscoplasticity theory based on overstress). Since experimental investigations typically concentrate on one particular aspect of inelastic deformation behavior such as creep or strain-rate dependence, it is often difficult to gather a comprehensive data set for a given material. In spite of this, considerable similitude in the deformation behavior of metals and polymers in various test conditions has nevertheless been established.  相似文献   

20.
Sheng  Fangfang  Zhong  Zhengyong  Wang  Keh-Han 《Nonlinear dynamics》2020,101(1):333-359

This paper presents the theory development and numerical implementation of a new gradient-deficient-based ANCF (Absolute Nodal Coordinate Formulation) model applied to perform the nonlinear dynamic analysis of elastic line structures subject to large stretching and deformation. The derivations of model equations, introduced numerical approaches, and result validations are the focuses of this study. Different from the traditional rod theory for small stretching consideration, the present model implements the line structures’ large elongation concepts into both the control mechanisms of constitutive formulations and equations of motion. The effect of external hydrodynamic forces on structures is also included in the model formulations. Based on the conservation of energy, the line model developed in this study covers the variation in strain and takes a full account of the bending effect with large stretching. A finite-element-based implicit scheme according to a modified Newmark-beta method is employed to solve the assembled system equations with unknown variables of nodal position vectors, their tangential derivatives, and strains. Selected cases with dynamic motions, such as nonlinear oscillation of a compound pendulum, free falling of a horizontal elastic beam in air with two different settings of gravity, free falling of a submerged horizontal tether with and without an attached concentrated mass, and a submerged vertical tether with a prescribed translational motion, are simulated to verify the developed model by comparing the results with analytical solutions and published experimental data and numerical results. It is found the present ANCF model, as noticed with good matched results with analytical solutions, measurements and other published solutions, is demonstrated to be able to provide converged and reasonably accurate predictions on the responses of line structures subject to large dynamic motions.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号